已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017 年山东省淄博市临淄中考数学一模试卷 一、选择题 1下列各等式中正确的是( ) A = 2 B 2+ =2 C a 2=( a+1)( a 2) D( n=am+n 2某学习小组 7 位同学,为玉 树地重灾区捐 款,捐款金额分别为: 5 元, 10 元,6 元, 6 元, 7 元, 8 元, 9 元,则这组数据的中位数与众数分别为( ) A 6, 6 B 7, 6 C 7, 8 D 6, 8 3民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( ) A B C D 4关于 x 的一元二次方程( a 1) x2+x+1=0 的一个根是 0,则 a 的值为( ) A 1 B 1 C 1 或 1 D 5观察图中尺规作图痕迹,下列说法错误的是( ) A 平分线 B D C点 C、 D 到 距离不相等 D 将矩形纸片 如图所示的方式折叠,恰好得到菱形 ,则菱形 面积为( ) A 1 B 2 C 2 D 4 7如图,在平面直角坐标系中, 点 A, B 的坐 标分别为( 1, 0),( 0, 2),某抛物线的顶点坐标为 D( 1, 1)且经过点 B,连接 线 此抛物线的另一个交点为 C,则 S S ) A 8: 1 B 6: 1 C 5: 1 D 4: 1 8当 0 时, y= y=ax+b 的图象大致是( ) A B C D 9如图,在梯形 , 角线 交于点 O,如果 SS : 2,那么 S S ( ) A 1: 3 B 1: 4 C 1: 5 D 1: 6 10如图,在平面直角坐标系中, 某一点 P 旋转一定的角度得到 ABC,根据图形变 换前后的关系可得点 P 的坐标为( ) A( 0, 1) B( 1, 1) C( 0, 1) D( 1, 0) 11甲、乙两 车沿同一平直 公路由 A 地匀速行驶(中途不停留),前往终点 、乙两车之间的距离 S(千米)与甲车行驶的时间 t(小时)之间的函数关系如图所示下列说法: 甲、乙两地相距 210 千米; 甲速度为 60 千米 /小时; 乙速度为 120 千米 /小时; 乙车共行驶 3 小时, 其中正确的个数为 ( ) A 1 个 B 2 个 C 3 个 D 4 个 12如图,正方形 边长为 4, 点 P、 Q 分别是 中点,动点 向点 B 运动,到点 B 时停止运动;同时,动点 F 从点 P 出发,沿 PD E、 F 的运动速度相同设点 E 的运动路程为 x, 面积为 y,能大致刻画 y 与 x 的函数关系的图象是( ) A B C D 二、填空题 13如果一个多边形的内角和是它的外角和的 2 倍,那么这个多边形的边数为 14一种甲型 感病毒的直径约为 科学记数法表示为 15如图, A( 4, 0), B( 3, 3),以 边作平行四边形 经过 C 点的反比例函数的解析式为 16如图,都是由边长为 1 的正方体叠成的图形 例如第( 1)个图形的表 面积为 6 个平 方单位,第( 2)个图形的表面积为 18 个平方单位,第( 3)个图形的表面积是 36 个平方单位依此规律则第( 5)个图形的表面积 个平方单位 17如图,双曲线 y= 经过 边上的点 A,且满足 = ,与 于点 D, S 1,求 k= 三、解答题 18( 1)计算:( ) 1+|1 |( 3) 0 ; ( 2)化简: ; ( 3)解不等式组: ,并写出它的非负整数解 ( 4)关于 x 的一元二次 方程 2m 1) x+=0设 别是方程的两个根,且满足 0,求实数 m 的值 19 2016 年 3 月全国两会胜利 召开,某数学 兴趣小组就两会期间出现频率最高的热词: A 脱贫攻坚 B绿色发展 C自主创新 D简政放权等热词进行了抽样调查,每个同学只能从中选择一个 “我最关注 ”的热词,如图是 根据调查结果绘制的两幅不完整的统计图 请你根据统计图提供的信息,解答下列问题: ( 1)本次调查中,一共调查了 名同学; ( 2)条形统计图中, m= , n= ; ( 3)扇形统计图中,热词 B 所在扇形的圆心角的度数是 ; ( 4)从该校学生中随机抽取一个最关注热词 D 的学生的概率是多少? 20某校兴趣 小组想测量一 座大楼 高度如图 6,大楼前有一段斜坡 知 长为 12 米,它的坡度 i=1: 在离 C 点 40 米的 D 处,用测角仪测得大楼顶端 A 的仰角为 37,测角仪 高为 ,求大楼 高度约为多少米?(结果精确到 ) (参考数据: 21某市在 城中村改造中 ,需要种植 A、 B 两种不同的树苗共 3000 棵,经招标,承包商以 15 万元的报价中标承包了这项工程,根据调查及相关资料表明, A、 成本价及成活率如表: 品种 购买价(元 /棵) 成活率 A 28 90% B 40 95% 设种植 A 种树苗 x 棵,承包商获得的利润为 y 元 ( 1)求 y 与 x 之间的函数关系式; ( 2)政府要求栽植这批树苗的成活率不低于 93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22如图, O 是 外接圆, 直径,作 过点 A 的切线交于点 D,连接 延长交 延长线于点 E ( 1)求证: O 的切线; ( 2)若 , ,求线段 劣弧 围成的图形面积(结果保留根号和 ) 23如图,在 , C, 点 D, 2P 从点 B 出发,在线段 以每秒 3速度向点 C 匀速运动,与此同时,垂直于 直线 m 从底边 发,以每秒 2速度沿 向匀速平移,分别交 E, F, H,当点 P 到达点 C 时,点 P 与直线 m 同时停止运动,设运动时间为 t 秒( t 0) ( 1)连接 t 为何值时,四边形 菱形? ( 2)连接 整个运动过程中, 面积是否存在最大值?若存在,试求当 面积最大时,线段 长 ( 3)是否存在某一时刻 t,使点 F 在线段 中垂线上?若存在,请求出此时刻 t 的值;若不存在,请说明理由 24如图,已知直线 y=3x+3 与 x 轴交于点 A,与 y 轴交于点 B,过 A, B 两点的抛物线交 x 轴于另一点 C( 3, 0) ( 1)求抛物线的解析式; ( 2)在抛物线的对称轴上是否存在点 P,使 等腰三角形?若存 在,求出符合条件的点 P 的坐标;若不存在,说明理由 ( 3)在抛物线上求一点 Q,使得 等腰三角形,并写出 Q 点的坐标; ( 4)除( 3)中所求的 Q 点 外,在抛物线 上是否还存在其它的点 Q 使得 存在,请求出一共有几个满足条件的点 Q(要求简要说明理由,但不证明);若不存在这样的点 Q,请说明理由 2017 年山东省淄博市临淄中考数学一模试卷 参考答案与试题解析 一、选择题 1下列各等式中正确的是( ) A = 2 B 2+ =2 C a 2=( a+1)( a 2) D( n=am+n 【考点】 因式分解十字相乘法等;实数的运算;幂的乘方与积的乘方 【分析】 分解利用十字相乘法以及幂的乘方和算术平方根以及实数运算分别分析得出即可 【解答】 解: A、 =2,故此选项错误; B、 2+ 无法计算,故此选项错误; C、 a 2=( a+1)( a 2),故此选项正确; D、( n=此选项错误; 故选: C 2某学习小组 7 位同学 ,为玉树地重 灾区捐款,捐款金额分别为: 5 元, 10 元,6 元, 6 元, 7 元, 8 元, 9 元,则这组数据的中位数与众数分别为( ) A 6, 6 B 7, 6 C 7, 8 D 6, 8 【考点】 中位数;众数 【分析】 首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果 【解答】 解:把已知数据按从小 到大的顺序排序后为 5 元, 6 元, 6 元, 7 元, 8元, 9 元, 10 元, 中位数为 7 6 这个数据出现次数最多, 众数为 6 故选 B 3民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( ) A B C D 【考点】 中心对称图形;轴对称图形 【分析】 根据轴对称图形与中心对称图形的概念求解 【解答】 解: A、不是轴对称图形,是中心对称图形,故本选项错误; B、是轴对称图形,也是中心对称图形,故本选项错误; C、旋转角是 ,只是每旋转 与原图重合, 而中心对称的定义是绕一定点旋转 180 度,新图形与原图形重合因此不符合中心对称的定义,不是中心对称图形 D、是轴对称图形,不是中心对称图形,故本选项错误 故选 C 4关于 x 的一元二次方程 ( a 1) x2+x+1=0 的一个根是 0,则 a 的值为( ) A 1 B 1 C 1 或 1 D 【考点】 一元二次方程的解 【分析】 根据方程的解的定义,把 x=0 代入方程,即可得到关于 a 的方程,再根据一元二次方程的定义即可求解 【解答】 解:根据题意得: 1=0 且 a 1 0, 解得: a= 1 故选 B 5观察图中尺规作图痕迹,下列说法错误的是( ) A 平分线 B D C点 C、 D 到 距离不相等 D 考点】 角平分线的性质 【分析】 根据图形的画法得出 角平分线,再根据尺规作图的画法结合角平分线的性质逐项分析四个选项即可得出结论 【解答】 解:根据尺规作图的画法可知: 角平分线 A、 平分线, A 正确; B、 D, B 正确; C、点 C、 D 到 距离相等, C 不正确; D、 D 正确 故选 C 6将矩形纸片 如图所示的方式折叠,恰好得到菱形 ,则菱形 面积为( ) A 1 B 2 C 2 D 4 【考点】 菱形的判定与性质;翻折变换(折叠问题) 【分析】 根据菱形 利用 通过折叠的性质,结合直角三角形勾股定理求得 长,则利用菱形的面积公式即可求解 【解答】 解: 四边形 菱形, , 假设 BE=x,则 x, x, 四边形 菱形, 0, 2E, x, 2x=3 x, 解得: x=1, ,利用勾股定理得出: = = , 又 B 1=2, 则菱形的面积是: C=2 故选: C 7如图,在平面直角坐标系 中,点 A, B 的坐标分别为( 1, 0),( 0, 2),某抛物线的顶点坐标为 D( 1, 1)且经过点 B,连接 线 此抛物线的另一个交点为 C,则 S S ) A 8: 1 B 6: 1 C 5: 1 D 4: 1 【考点】 二次函数的性质 【分析】 设直线 解析式为 y=kx+b,二次函数的解析式为 y=a( x+1) 2+1,结合点的坐标利用待定系数法求出一次函数与二次函数的解析式,联立一次函数与二次函数解析式解出交点 C 的坐标,根据两点间的距离公式求出线段 借用点到直线的距离公式(分子部分)寻找到点 D、 O 到直线 距离间的关键,借助各比例关系利用三角形的面积公式即可得出结论 【解答】 解:设直线 解析式为 y=kx+b,二次函数的解析式为 y=a( x+1)2+1, 将点 A( 1, 0)、 B( 0, 2)代入 y=kx+b 中得: ,解得: , 直线 解析式为 y= 2x+2; 将点 B( 0, 2)代入到 y=a( x+1) 2+1 中得: 2=a+1,解得: a=1, 二次函数的解析式为 y=( x+1) 2+1=x+2 将 y= 2x+2 代入 y=x+2 中得: 2x+2=x+2,整理得: x=0, 解得: 4, , 点 C 的坐标为( 4, 10) 点 C( 4, 10),点 B( 0, 2),点 A( 1, 0), = , =4 , 直线 析式为 y= 2x+2 可变形为 2x+y 2=0, | 2+1 2|=3, | 2|=2 S S 3: 2=12: 2=6: 1 故选 B 8当 0 时, y= y=ax+b 的图象大致是( ) A B C D 【考点】 二次函数的图象;一次函数的图象 【分析】 根据题意, 0,即 a、 b 同号,分 a 0 与 a 0 两种情况讨论,分析选项可得答案 【解答】 解:根据题意, 0,即 a、 b 同号, 当 a 0 时, b 0, y=开口向上,过原点, y=ax+b 过一、二、三象限; 此时,没有选项符合, 当 a 0 时, b 0, y=开口向下,过原点, y=ax+b 过二、三、四象限; 此时, D 选项符合, 故选 D 9如图,在梯形 , 角线 交于点 O,如果 SS : 2,那么 S S ( ) A 1: 3 B 1: 4 C 1: 5 D 1: 6 【考点】 相似三角形的判定与性质;梯形 【分析】 首先根据 S S : 2,可得 : 2;然后根据相似三角形的面积的比的等于它们的相似比的平方,求 出 S S 多少即可 【解答】 解: 在梯形 , 且 S S : 2, : 2; : 2, S S : 4 故选: B 10如图,在平面直角坐标系中, 某一点 P 旋转一定的角度得到 ABC,根据图形变换前后的关系可得点 P 的坐标为( ) A( 0, 1) B( 1, 1) C( 0, 1) D( 1, 0) 【考点】 坐标与图形变化旋转 【分析】 根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心 【解答】 解:由图形可知,对应点的连线 垂直平分线的交点是点( 1, 1),根据旋转变换的性质,点( 1, 1)即为旋转中心 故旋转中心坐标是 P( 1, 1) 故选 B 11甲、乙两车 沿同一平直公 路由 A 地匀速行驶(中途不停留),前往终点 、乙两车之间的距离 S(千米)与甲车行驶的时间 t(小时)之间的函数关系如图所示下列说法 : 甲、乙两地相距 210 千米; 甲速度为 60 千米 /小时; 乙速度为 120 千米 /小时; 乙车共行驶 3 小时, 其中正确的个数为( ) A 1 个 B 2 个 C 3 个 D 4 个 【考点】 一次函数的应用 【分析】 根据题意和函数图象可以分别计算出各个小题中的结果,从而可以判断各小题是否正确,从而可以解答本题 2解答】 解:由图可知, 甲车的速度为: 60 1=60 千米 /时,故 正确, 则 A、 B 两地的距离是: 60 =210(千米),故 正确, 则乙的速度为:( 60 2) ( 2 1) =120 千米 /时,故 正确, 乙车行驶的时间为: 2 1=1 (小时),故 错误, 故选 C 12如图,正方形 边长为 4, 点 P、 Q 分别是 中点,动点 向点 B 运动,到点 B 时停止运动;同时,动点 F 从点 P 出发,沿 PD E、 F 的运动速度相同设点 E 的运动路程为 x, 面积为 y,能大致刻画 y 与 x 的函数关系的图象是( ) A B C D 【考点】 动点问题的函数图象 【分析】 分 F 在线段 ,以及线段 两种情况,表示出 y 与 x 的函数解析式,即可做出判断 【解答】 解:当 F 在 运动时, 面积为 y= D=2x( 0 x 2), 当 F 在 运动时, 面积为 y= F= x( 6 x) = x( 2 x 4), 图象为: 故 选 A 二、填空题 13如果一个多边形的内角和是它的外角和的 2 倍,那么这个多边形的边数为 6 【考点】 多边形内角与外角 【分析】 多边形的外角和是 360,内角 和是它的外角和的 2 倍,则内角和是 2 360=720 度 n 边形的内角和可以表示成( n 2) 180,设这个多边形的边数是 n,就得到方程,从而求出边数 【解答】 解:设这个多边形的边数为 n, n 边形的内角和为( n 2) 180,多边形的外角和为 360, ( n 2) 180=360 2, 解得 n=8 此多边形的边数为 6 故答案为 : 6 14一种甲型 感病毒的直径约为 科学记数法表示为 10 7 考点】 科学记数法 表示较小的数 【分析】 绝对值 1 的正数也可 以利用科学记 数法表示,一般形式为 a 10 n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定 【解答】 解:数 科学记数法表示为 10 7 故答案为: 10 7 15如图, A( 4, 0), B( 3, 3),以 边作平行四边形 经过 C 点的反比例函数的解析式为 y= 【考点】 待定系数法求反比例函数解析式;平行四边形的性质 【分析】 设经过 C 点的反比例函数的 解析式是 y= ( k 0),设 C( x, y)根据平行四边形的性质求出点 C 的坐标( 1, 3)然后利用待定系数法求反比例函数的解析式 【解答】 解:设经过 C 点的反比例函数的解析式是 y= ( k 0),设 C( x, y) 四边形 平行四边形, A; A( 4, 0), B( 3, 3), 点 C 的纵坐标是 y=3, |3 x|=4( x 0), x= 1, C( 1, 3) 点 C 在反比例函数 y= ( k 0)的图象上, 3= , 解得, k= 3, 经过 C 点的反比例函数的 解析式是 y= 故答案为: y= 16如图,都是由边长为 1 的正方体叠成的图形 例如第( 1)个图形的表面 积为 6 个平方 单位,第( 2)个图形的表面积为 18 个平方单位,第( 3)个图形的表面积是 36 个平方单位依此规律则第( 5)个图形的表面积 90 个平方单位 2 1 c n j y 【考点】 规律型:图形的变化类 【分析】 根据题意分析 可得,若增加至第 n 层,则需要增加正方体1+2+3+ +n= 个,且其表面积为最下层所有正方体表面积之和 【解答】 解:第( 5)个图形的表面积 6 15=90 故答案为: 90 17如图,双曲线 y= 经过 边上的点 A,且满足 = ,与 于点 D, S 1,求 k= 8 【考点】 反比例函数系数 k 的几何意义;相似三角形的判定与性质 【分析】 过 A 作 x 轴于 点 E,根据反 比例函数的比例系数 k 的几何意义可得 S 四边形 据 似三角形面积的比等于相似比的平方,据此即可求得 面积,从而求得 k 的值 【解答】 解:过 A 作 x 轴于点 E S S 四边形 1, = =( ) 2= , S , 则 k=8 故答案是: 8 三、解答题 18( 1)计算:( ) 1+|1 |( 3) 0 ; ( 2)化简: ; ( 3)解不等式组: ,并写出它的非负整数解 ( 4)关于 x 的一元二次方程 2m 1) x+=0设 别是方程的两个根,且满足 0,求实数 m 的值 【考点】 根与系数的关系;实数的运算 ;零指数幂;负整数指数幂;根的判别式;解一元一次不等式组;一元一次不等式组的整数解 【分析】 ( 1)将( ) 1=2、( 3) 0=1、 = 代入原式,再根据实数的运算即可得出结论; ( 2)根据完全平方差、完全平凡公式结合分式的运算,即可得出结论; ( 3)根据不等式组的解法及步骤,解不等式组即可得出结论; ( 4)根据方程有两个实 数根结合根的 判别式即 可得出 = 4m 3 0,解之即可得出 m 的取值范围,再根据根与系数的关系结合 0 即可得出关于 m 的一元二次方程,解之即可得出结论 【解答】 解:( 1)( ) 1+|1 |( 3) 0 , =2+ 1 1 , = ( 2)原式 = , = ( 1+a)( 1 a), =( a 2)( 1+a), =a 2 ( 3) , 解不等式 ,得: x 4; 解不等式 ,得: x 2 不等式组的解为 4 x 2 x= 4、 3、 2 和 1 ( 4) 方程 2m 1) x+=0 有两个实数根, =( 2m 1) 2 4( ) = 4m 3 0, m 方程 2m 1) x+=0 的两个根, x1+m 1, x1x2=, 20,即( 2m 1) 2 2( ) =+10, 解得: m= 2 或 m=6(舍去) 实数 m 的值为 2 19 2016 年 3 月全国 两会胜利召开 ,某数学兴趣小组就两会期间出现频率最高的热词: A 脱贫攻坚 B绿色发展 C自主创新 D简政放权等热词进行了抽样调查,每个同学只能从中选择一个 “我最关注 ”的热词,如图是根据调查结果绘制的两幅不完整的统计图 请你根据统计图提供的信息,解答下列问题: ( 1)本次调查中,一共调查了 300 名同学; ( 2)条形统计图中, m= 60 , n= 90 ; ( 3)扇形统计图中,热词 B 所在扇形的圆心角的度数是 72 ; ( 4)从该校学生中随机抽取一个最关注热词 D 的学生的概率是多少? 【考点】 概率公式;扇形统计图;条形统计图 【分析】 ( 1)根据 A 的人数为 105 人,所占的百分比为 35%,求出总人数,即可解答; ( 2) C 所对应的人数为:总人数 30%, B 所对应的人数为:总人数 A 所对应的人数 C 所对应的人数 D 所对应的人数,即可解答; ( 3)根据 B 所占的百分比 360,即可解答; ( 4)根据概率公式,即可解答 【解答】 解:( 1) 105 35%=300(人) 故答案为: 300; ( 2) n=300 30%=90(人), m=300 105 90 45=60(人) 故答案为: 60, 90; ( 3) 360=72 故答案为: 72; ( 4)从该校学生中随机抽取一个最关注热词 D 的学生的概率是 = 答:从该校学生中随机抽取一个最关注热词 D 的学生的概率是 20某校兴趣小组想测量一 座大楼 高度如图 6,大楼前有一段斜坡 知 长为 12 米,它的坡度 i=1: 在离 C 点 40 米的 D 处,用测角仪测得大楼顶端 A 的仰角为 37,测角仪 高为 ,求大楼 高度约为多少米?(结果精确到 ) (参考数据: 【考点】 解直角三角形的应用仰角俯角问题;解直角三角形的应用坡度坡角问题 【分析】 延长 直线 点 F,过点 E 作 足为点 H,在 利用坡度的定义求得 长,则 可求得,然后在直角 利用三角函数求得 长,进而求得 长 【解答】 解:延长 直线 点 F,过点 E 作 足为点 H 在 , =i=1: , 设 BF=k,则 , k 又 2, k=6, , C+ 0+6 在 , , AH= ( 40+6 ) ), F H 答:大楼 高度约为 21某市在城 中村改造中, 需要种植 A、 B 两种不同的树苗共 3000 棵,经招标,承包商以 15 万元的报价中标承包了这项工程,根据调查及相关资料表明, A、 品种 购买价(元 /棵) 成活率 A 28 90% B 40 95% 设种植 A 种树苗 x 棵,承包商获得的利润为 y 元 ( 1)求 y 与 x 之间的函数关系式; ( 2)政府要求栽植这批树苗的成活率不低于 93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 【考点】 一次函数的应用;一元一次不等式的应用 【分析】 ( 1)根据题意和表格中的数据可以得到 y 与 x 的函数关系式; ( 2)根据题意可以的得到相应的不等式,从而可以解答本题 【解答】 解:( 1)由题意可得, y=150000 28x 40=30000+12x, 即 y 与 x 之间的函数 关系式是 y=12x+30000; ( 2)由题意可得, 90%x+95% 3000 93%, 解得, x 1200, y=12x+30000, 当 x=1200 时, y 取得最大值,此时 y=44400, 即承包商购买 A 种树苗 1200 棵, B 种树苗 1800 棵时,能获得最大利润,最大利润是 44400 元 22如图, O 是 外接圆, 直径,作 过点 A 的切线交于点 D,连接 延长交 延长线于点 E ( 1)求证: O 的切线; ( 2)若 , ,求线段 劣弧 围成的图形面积(结果保留根号和 ) 【考点】 切线的判定;扇形面积的计算 【分析】 ( 1)连结 图, 先根据切线的 性质得 0,再根据平行线的性质,由 1= 3, 2= 4,加上 3= 4,则 1= 2,接着证明 到 0,于是可根据切线的判定定理得到 O 的切线; ( 2)设半径为 r,则 E r, OC=r,在 利用勾股定理得到 2 ) 2=( 6 r) 2,解得 r=2,再利用正切函数求出 0,然后根据扇形面积公式和 S 阴影部分 =S S 扇形 行计算即可 【解答】 解:( 1)连结 图, O 的切线, 0, 1= 3, 2= 4, C, 3= 4, 1= 2, 在 , , 0, O 的切线; ( 2)设半径为 r,则 E r, OC=r, 在 , 2 ) 2=( 6 r) 2,解得 r=2, = = , 0, S 阴影部分 =S S 扇形 2 2 =2 23如图,在 , C, 点 D, 2P 从点 B 出发,在线段 以每秒 3速度向点 C 匀速运动,与此同时,垂直于 直线 m 从底边 发,以每秒 2速度沿 向匀速平移,分别交 E, F, H,当点 P 到达点 C 时,点 P 与直线 m 同时停止运动,设运动时间为 t 秒( t 0) ( 1)连接 t 为何值时,四边形 菱形? ( 2)连接 整个运动过程中, 面积是否存在最大值?若存在,试求当 面积最大时,线段 长 ( 3)是否存在某一时刻 t,使点 F 在线段 中垂线上?若存在,请求出此时刻 t 的值;若不存在,请说明理由 【考点】 四边形综合题;解一元二次方程因式分解法;线段垂直平分线的性质;菱形的判定与性质;相似三角形的判定与性质 【分析】 ( 1)根 据四边形 D,此时, 根据直线 m 以每秒 2速度沿 向匀速平移,即可求得 t= =2( s); ( 2)先根据 到 而得出 = ,据此求得 2 3t,再根据 S H= ( 12 3t) 2t= 32t= 3( t 2) 2+12( 0 t 4),求得当 t=2 秒时, S 大值为 12后计算线段 ( 3)若点 F 在线段 中垂线 上,则 P, 过点 F 作 G,则D=2t, 据 到 = ,进而得到 t,2 3t t,最后在 ,根据勾股定理列出方程( 12 3t t) 2+( 2t) 2=( 12 3t) 2,即可求得 t 的值 【解答】 解:( 1)如图 1,若四边形 菱形,则 直平分 此时, 又 直线 m 以每秒 2速度沿 向匀速平移, t= =2( s), 此时, 直平分 E, F C, 点 D, B= C B, C, F, F=F, 即四边形 菱形, 故当 t=2s 时,四边形 菱形; ( 2)如图 2, 直线 m 以每秒 2速度沿 向匀速平移, t, 2t, = ,即 = 解得 2 3t, S H= ( 12 3t) 2t= 32t= 3( t 2) 2+12( 0 t 4), 当 t=2 秒时, S 在最大值,最大值为 12 此时 t=6 ( 3)存在某一时刻 t,使点 F 在线段 中垂线上 C, 2 C=10 若点 F 在线段 中垂线上,则 P, 由( 2)可得, 2 3t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025高考数学考二轮专题过关检测5 统计与概率数-专项训练【含答案】
- 机械工程中的机械表面处理规范要求
- 民主生活会征求意见表
- 关于质量、工期、服务等方面的承诺及合理化建议
- 二零二五年度高铁站灯箱广告经营权竞拍合同3篇
- 二零二五年度股权众筹项目分配协议书范本3篇
- 2024年清远职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年海南软件职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 语文S版六下《鲧禹治水》课件知识分享
- 资产监督检查研究报告
- 2024年医师定期考核临床业务知识考试题库及答案(共三套)
- 建筑材料供应链管理服务合同
- 孩子改名字父母一方委托书
- 2024-2025学年人教版初中物理九年级全一册《电与磁》单元测试卷(原卷版)
- 江苏单招英语考纲词汇
- 2024年事业单位财务工作计划例文(6篇)
- 2024年工程咨询服务承诺书
- 青桔单车保险合同条例
- 车辆使用不过户免责协议书范文范本
- 2023-2024学年天津市部分区九年级(上)期末物理试卷
- DB13-T 5673-2023 公路自愈合沥青混合料薄层超薄层罩面施工技术规范
评论
0/150
提交评论