版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.1.3 弧、弦、圆心角,人教版九年级上册,圆是中心对称图形吗?它的对称中心在哪里?,圆是中心对称图形,,它的对称中心是圆心.,思考:,圆心角:我们把 的角叫做圆心角.,O,AOB是圆心角吗?,概念:,顶点在圆心,是,1、判别下列各图中的角是不是圆心角,并说明理由。,对于下图中的三个量:,圆心角,弧,弦,探究:,这三个量之间会有什么关系呢?,如图,将圆心角AOB绕圆心O旋转到A1OB1的位置,你能发现哪些等量关系?为什么?,O,A,B,A1,B1, AOB=A1OB1,C,O,A,B,探究一,思考:如图,在等圆中,如果AOBAO B, 你发现的等量关系是否依然成立?为什么?,O ,A,B,
2、由AOBAO B可得到:,下面的说法正确吗?为什么? 如图,因为,根据圆心角、弧、弦、 的关系可知:,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.,归纳:, AOB=A1OB1,圆心角定理,(1)、如果 那么AOBAOB, 成立吗 ?,探究二,在同圆中,,(1),成 立,(2)、如果 那么AOBAOB, 成立吗 ?,探究二,在同圆中,,(2),成 立,弧、弦与圆心角的关系定理,小结,圆心角 相等,弧 相等,弦 相等,2、在同圆或等圆中,相等的弧所对的圆心角_, 所对的弦_; 3、在同圆或等圆中,相等的弦所对的圆心角_,所对的弧_,相等,相等,相等,相等,在同圆或等圆中,两个圆心角、
3、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等,(1) 圆心角,(2) 弧,(3) 弦,知一得二,等对等定理整体理解:,A,B,A1,B1,如图,AB、CD是O的两条弦 (1)如果AB=CD,那么_,_ (2)如果 ,那么_,_ (3)如果AOB=COD,那么_,_ (4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,练习,OEOF,证明:, AB=ACABC是等腰三角形,又ACB=60,, ABC是等边三角形 , AB=BC=CA., AOBBOCAOC.,A,B,C,O,例题,例1 如图,在O中, AB=AC ,ACB=60,
4、求证:AOB=BOC=AOC, ,1、如图,在O中,AB=AC ,C=75,求A的度数。,练习, ,2、如图,AB是O 的直径, COD=35,求AOE 的度数,解:,练习,练习,3、如图,AD=BC, 比较AB与CD的长度,并证明你的结论。, ,4、如图,已知OA、OB是O的半径,点C为AB的中点,M、N分别为OA、OB的中点,求证:MC=NC,练习,5、如图,BC为O的直径,OA是O的半径,弦BEOA,求证:AC=AE, ,练习,6、如图7所示,CD为O的弦,在CD上取 CE=DF,连结OE、OF,并延长交O于点A、 B. (1)试判断OEF的形状,并说明理由; (2)求证:AC=BD,H,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车电子产品项目投资申请报告代可行性研究报告
- 系绳物体的浮力问题-2023年中考物理复习讲练(原卷版)
- 知识产权保护承诺书
- 美丽的颐和园导游词(33篇)
- 物流运输车辆租赁合同(35篇)
- 粗砂垫层试验段的施工方案及试验段总结
- 23.1 平均数与加权平均数 同步练习
- 天津市南开区2024-2025学年七年级上学期11月期中道德与法治试题(含答案)
- 2024年建筑电工(建筑特殊工种)考试试题题库
- 黑龙江省大庆市肇源县联盟学校2024-2025学年七年级上学期11月期中生物试题(含答案)
- 2024年宏观经济发展情况分析报告
- 摄影入门课程-摄影基础与技巧全面解析
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- XX有限公司人员分流方案
- 大语言模型赋能自动化测试实践、挑战与展望-复旦大学(董震)
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 追觅科技在线测评逻辑题
- 2025年广东省高中学业水平考试春季高考数学试题(含答案解析)
- 2024年重庆市渝北区数据谷八中小升初数学试卷
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
- 2024年AI大模型场景探索及产业应用调研报告-前瞻
评论
0/150
提交评论