




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章,数列,学习目标 1.掌握等比数列的前n项和公式及公式推导思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.,2.3等比数列 2.3.2等比数列的前n项和(一),1,预习导学 挑战自我,点点落实,2,课堂讲义 重点难点,个个击破,3,当堂检测 当堂训练,体验成功,知识链接 1.求等差数列前n项和用的是倒序相加法,对于等比数列an,当q1,Sna1a1qa1q2a1qn1a1q(a1a1qa1qn1a1qn1)a1q(Sna1qn1),至此,你能用a1和q表示出Sn吗?,至此你能用a1和q表示出Sn吗?,预习导引 1.等比数列前n项和公式: (2)注意:应用该公式时,一
2、定不要忽略q1的情况.,na1,2.等比数列前n项和公式的变式,3.错位相减法 推导等比数列前n项和的方法叫 法.一般适用于求一个等差数列与一个等比数列对应项积的前n项和.,错位相减,要点一前n项和公式基本量的运算 例1在等比数列an中, (1)若q2,S41,求S8;,解方法一设首项为a1,q2,S41,,解设公比为q,由通项公式及已知条件得,(2)若a1a310,a4a6 ,求a4和S5.,a18.,规律方法(1)在等比数列an的五个量a1,q,an,n,Sn中,已知其中的三个量,通过列方程组求解,就能求出另两个量,这是方程思想与整体思想在数列中的具体应用. (2)在解决与前n项和有关的问
3、题时,首先要对公比q1或q1进行判断,若两种情况都有可能,则要分类讨论.,跟踪演练1若等比数列an满足a2a420,a3a540,则公比q_;前n项和Sn_. 解析设等比数列an的公比为q,,2n12,2,要点二错位相减法求和 例2求和:Snx2x23x3nxn (x0). 解分x1和x1两种情况. 当x1时,Sn123n. 当x1时,Snx2x23x3nxn, xSnx22x33x4(n1)xnnxn1, (1x)Snxx2x3xnnxn1,规律方法一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法.,跟踪演练2求数列1,3a,5a2,7a3,(2n
4、1)an1的前n项和. 解(1)当a0时,Sn1. (2)当a1时,数列变为1,3,5,7,(2n1), (3)当a1且a0时, 有Sn13a5a27a3(2n1)an1. aSna3a25a37a4(2n1)an. 得SnaSn12a2a22a32an1(2n1)an,,(1a)Sn1(2n1)an2(aa2a3a4an1),要点三等比数列前n项和的综合应用 例3借贷10 000元,月利率为1%,每月以复利计息,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元(1.0161.061,1.0151.051)? 解方法一设每个月还贷a元,第1个月后欠款为a0元,以后第n个月
5、还贷a元后,还剩下欠款an元(1n6),则a010 000,a11.01a0a, a21.01a1a1.012a0(11.01)a, ,a61.01a5a1.016a011.011.015a. 由题意,可知a60,即1.016a011.011.015a0, 故每月应支付1 739元.,方法二一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为 S1104(10.01)6104(1.01)6(元). 另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为 S2a(10.01)5a(10.01)4a,故每月应支付1 739元.,规律方法解决此类问题的关键是建立等比
6、数列模型及弄清数列的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计算时每一期本金的数额是不同的,复利的计算公式为SP(1r)n,其中P代表本金,n代表存期,r代表利率,S代表本利和.,跟踪演练3一个热气球在第一分钟上升了25 m的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m吗? 解用an表示热气球在第n分钟上升的高度,由题意,得 an1 an, 因此,数列an是首项a125,公比q 的等比数列.,热气球在前n分钟内上升的总高度为: 故这个热气球上升的高度不可能超过125 m.,例4设an是公比大于1的等比数列,Sn为数
7、列an的前n项和.已知S37,且a13,3a2,a34构成等差数列. (1)求数列an的通项;,设数列an的公比为q,由a22,可得a1 ,a32q, 又S37,可知 22q7,即2q25q20. 解得q12,q2 . 由题意得q1,q2,a11. 故数列an的通项为an2n1.,(2)令bnln a3n1,n1,2,求数列bn的前n项和Tn. 解由于bnln a3n1,n1,2, 由(1)得a3n123n, bnln 23n3nln 2. 又bn1bn3ln 2,bn是等差数列,,规律方法利用等比数列前n项和公式时注意公比q的取值,同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降
8、低题目的难度,解题时有时还需利用条件联立方程组求解.,跟踪演练4已知Sn是无穷等比数列an的前n项和,且公比q1,已知1是 S2和 S3的等差中项,6是2S2和3S3的等比中项. (1)求S2和S3;,解得3S22S36,即S22,S33.,(2)求此数列an的前n项和;,(3)求数列Sn的前n项和. 解由(2)得S1S2Sn,1.等比数列1,x,x2,x3,的前n项和Sn为(),C,1,2,3,4,2.设等比数列an的公比q2,前n项和为Sn,则 等于(),C,2,3,4,1,3.等比数列an的各项都是正数,若a181,a516,则它的前5项的和是() A.179 B.211 C.243 D.275,1,2,3,4,B,4.某厂去年产值为a,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为_. 解析注意去年产值为a,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a. 1.1a1.12a1.13a1.14a1.15a11a(1.151).,1,2,3,4,11a(1.151),课堂小结 1.在等比数列的通项公式和前n项和公式中,共涉及五个量:a1,an,n,q,Sn,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务合作框架协议书
- 楼上住房渗水协议书
- 试验检测分包协议书
- 委托拖车协议书样本
- 重庆珠宝回购协议书
- 商户进场物业协议书
- 买房赔偿协议书范本
- 酒店聘请经理协议书
- 离婚调解协议书离婚
- 驻厂工人安全协议书
- 2025年浙江安防职业技术学院单招职业技能测试题库必考题
- 奔驰事故留修专员年终总结
- 2025电工(高级技师)技能鉴定精练考试指导题库及答案(浓缩500题)
- 患者隐私保护培训课件
- 《校园安全教育(第二版)》 课件全套 项目1-8 走进安全教育 -确保实习安全
- 2025年人民法院信息技术服务中心招聘应届高校毕业生高频重点模拟试卷提升(共500题附带答案详解)
- GB/T 45159.2-2024机械振动与冲击黏弹性材料动态力学性能的表征第2部分:共振法
- 2025年全球及中国财务报表审计服务行业头部企业市场占有率及排名调研报告
- 2025年浙江金华市轨道交通集团招聘笔试参考题库含答案解析
- 2023年高考化学试卷(河北)(解析卷)
- 电力平安工作规程
评论
0/150
提交评论