




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2.1导数的计算-几种常见函数的导数,教学目标,1掌握四个公式,理解公式的证明过程 2学会利用公式,求一些函数的导数 3理解变化率的概念,解决一些物理上的简单问题 【教学重点】用定义推导常见函数的导数公式 【教学难点】公式的推导,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换x0即
2、为求函数在点x0处的 导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0)处的切线的斜率.,5.求切线方程的步骤:,(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,二、新课几种常见函数的导数,根据导数的定义可以得出一些常见函数的导数公式.,公式1: .,1) 函数y=f(x)=c的导数.,请同学们求下列函数的导数:,表示y=x图象上每一点处的切线斜率都为1,这又说明什么?,公式2: .,请注意公式中的条件是 ,但根据我们所掌握的知识,只能就 的情况加以证明.这个公式称为幂函数的导数公式.事实上n可以是任意实数.,看几个例子:,例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程。,看几个例子:,四、小结与作业,2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同范文
- 建筑材料采购合同协议书
- 劳动合同解除谈话笔录1
- 企业云计算资源使用合作协议
- 数字化合作框架下的远程工作协作合同
- 配电网升级改造合同
- 环保工程服务合同:全面解决方案
- 合同生命周期管理:物业财务关键制度
- 图书馆目视化管理
- 拆除工程中的文物保护与迁移策略考核试卷
- 新概念二册课文电子版
- 云计算与大数据PPT完整全套教学课件
- 医保工作手册
- 北师大五下《包装的学问》评课稿
- CNAS-GL039 分子诊断检验程序性能验证指南
- 【高中生物】染色体变异课件 高一下学期生物人教版必修2
- 道路运输车辆管理二级维护新规定
- 弘扬中华传统文化-孝道
- DBJ51-143-2020 四川省公共建筑节能设计标准
- GB/T 9581-2011炭黑原料油乙烯焦油
- GB/T 5988-2022耐火材料加热永久线变化试验方法
评论
0/150
提交评论