数学(心得)之高考数学复习方法浅谈_第1页
数学(心得)之高考数学复习方法浅谈_第2页
数学(心得)之高考数学复习方法浅谈_第3页
数学(心得)之高考数学复习方法浅谈_第4页
数学(心得)之高考数学复习方法浅谈_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学论文之高考数学复习方法浅谈 高考数学复习方法浅谈 黄莺 (贵州省习水县第一中学 贵州 习水 564600)高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。高考试题这种积极导向,决定了我们在教学中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。只有加强数学思想方法的教学,优化学生的思维,全面提高数学能力,才能提高学生解题水平和应试能力。1 高考复习的独特性 高考复习有别于新知识的教学。它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数

2、学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。 2 高考复习中数学思想方法教学的原则第一,把知识的复习与思想方法的培养同时纳入教学目的原则。各章应有明确的数学思想方法的教学目标,教案中要精心设计思想方法的教学过程。 第二,寓思想方法的教学于完善学生的知识结构之中、于教学问题的解决之中的原则。知识是思想方法的载体,数学问题是在数学思想的

3、指导下,运用知识、方法加工的对象。皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。 第三,适当章节的强化训练与贯通复课全程的反复运用相结合的原则。数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。特别是有广泛应用性的数学思想的教学更是如此。如数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出柳暗花明又一村般的数形和谐完美结合的境地。 在

4、某种思想方法应用频繁的章节,应适当强化这种思想方法的训练。如在数学归纳法一节,应精心设计循序渐进的组题,在问题解决中提炼并明确总结联合运用不完全归纳法、数学归纳法解题这一思想方法,在学生能熟练运用的基础上,通过反复运用,才能形成自觉运用的意识。 3 高考复习中数学思想方法教学的途径用数学思想指导基础复习,在基础复习中培养思想方法。基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如几何体体积公式的推导体系,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。只有通过展现体积问题解决的思路分析,并同时形成系统的条理的体积公式的

5、推导线索,才能把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,这对激发学生的创造思维,形成数学思想,掌握数学方法的作用是不可低估的。 注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义。运用转化、数形结合的思想,这三块知识可相互为用。注意总结建构数学知识体系中的教学思想方法,揭示思想方法对形成科学的系统的知识结构,把握知识的运用,深化对知识的理解等数学活动中指导作用。如函数图象变换的复习中,笔者把散

6、见于二次函数、反函数、正弦型函数等知识中的平移、伸缩、对称变换,引导学生运用化曲线间的关系为对应动点之间的关系的转化思想及求相关动点轨迹的方法统一处理,得出图象变换的一般结论。深化学生图象变换的认识,提高了学生解决问题的能力及观点。 用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。 注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。 注意数学思想方

7、法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结二垂足。这样平面角即为所得的直角三角形的一锐角。这个通法就是在化立体问题为平面问题的转化思想的指导下求得的。其中三垂线定理在构图中的运用,也是分析,联想等数学思维方法运用之所得。 调整思路,克服思维障碍时,注意数学思想方法的运用。通过认真观察,以产生新的联想;分类讨论,使条件确切,结论易求;化一般为特殊,化抽象为具体,使问题简化等都值得我们一试。分析、归纳、类比等数学思维方法,数形结合、分类讨论、转化等数学思想是走出思维困境的武器与指南。 用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引伸推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论