




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届高考物理二轮复习:力学三大观点的综合应用学案
1.力学三大观点对比
力学三大观点对应规律表达式
牛顿第二定律F=ma
v=v0+at
动力学观点匀变速直线
x=v()t,+.-1at,2
2
运动规律
22
v~v0=2ax
动能定理W=AEk
Eki+EPi=
机械能守恒定律
能量观点
Ek2+Ep2
功能关系WG=-AEP
能量守恒定律
EI=E2
动量定理I=p'-p
动量观点
动量守恒定律P1+P2=P1,+P2’
2.选用原则
(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向为匀
变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题。
(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功
能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应
优先选用能量守恒定律。
第1页共34页
(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特
别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求
解。
⑷对于碰撞、爆炸、反冲、地面光滑的板块问题,若只涉及初末速度
而不涉及力、时间,应用动量守恒定律求解。
[例题]如图所示,以v=5m/s的速度顺时针匀速转动的水平传送带,
左端与粗糙的弧形轨道平滑对接,右端与光滑水平面平滑对接,水平
面上有n个位于同一直线上、处于静止状态的相同小球,小球质量
mo=O.2kgo质量m=0.1kg的物体从轨道上高h=4.0m的P点由静止
开始下滑,滑到传送带上的A点时速度大小v0=7m/so物体和传送带
之间的动摩擦因数u=0.5,传送带两端AB之间的距离L=3.4mo物体
与小球、小球与小球之间发生的都是弹性正碰,重力加速度g取
10m/s2,710^3.16o求:
⑴物体从P点下滑到A点的过程中,摩擦力做的功;
⑵物体第一次向右通过传送带的过程中,传送带对物体的冲量大小;
⑶物体第一次与小球碰撞后,在传送带上向左滑行的最大距离;
(4)n个小球最终获得的总动能。
第2页共34页
[拓展训练1](2024•福建龙岩模拟)如图所示,用长为R的不可伸长
的轻绳将质量为勺1的小球A悬挂于0点。在光滑的水平地面上,质量
为m的小物块B(可视为质点)置于长木板C的左端静止。将小球A拉
起,使轻绳水平拉直,将A球由静止释放,运动到最低点时与小物块B
发生弹性正碰。
(1)求碰后轻绳与竖直方向的最大夹角。的余弦值;
⑵若长木板C的质量为2m,小物块B与长木板C之间的动摩擦因数
为R,长木板C的长度至少为多大,小物块B才不会从长木板C的上表
面滑出?
[拓展训练2]如图所示,粗糙水平面上固定一足够长且表面光滑的斜
面体,斜面倾角。未知,在斜面体内部埋置了一个与斜面平行的压力
传感器,且示数为零。水平面上靠近斜面体处静止放置A、B两物体,
其中n)A=lkg,mB=2kg,两物体紧贴在一起,中间夹着一小块炸药(质量
可忽略),点燃炸药发生爆炸使两物体脱离,B物体立刻冲上斜面体,经
过压力传感器时,测得传感器上表面受到的压力大小为16N,已知A
物体与水平面间的动摩擦因数JF0.5,炸药爆炸时释放的化学能为
E=27J且全部转化为两物体的动能,不考虑B物体在斜面体与水平面
连接处的动能损失,A、B两物体均可视为质点,爆炸时间极短,重力加
速度g取10m/s2,求:
第3页共34页
⑴爆炸后瞬间,A、B两物体获得的速度大小;
(2)B物体在斜面上运动的时间to;
(3)要使B物体能追上A物体,B物体与水平面之间的动摩擦因数n2
的取值范围。
增分训练2力学三大观点的综合应用
1.有两个动能相同的物体a和b在粗糙的水平面上运动,经相同时间
都停了下来。其中物体a的质量较大,a和b与水平面间的动摩擦因
数分别为口a和口b,a和b的位移分别为:和心,则()
A.Ra>Rb且Xa<Xb
B.Ra>Ub且Xa>Xb
C.Ra〈口b且Xa>Xb
D.口a〈口b且Xa〈Xb
2.如图,某次冰壶比赛,甲壶以速度V。与静止的乙壶发生正碰。已知冰
面粗糙程度处处相同,两壶完全相同,从碰撞到两壶都静止,乙的位移
是甲的9倍,则()
甲。O乙
冰面
A.两壶碰撞过程无机械能损失
第4页共34页
B.两壶碰撞过程动量变化量相同
C.碰撞后瞬间,甲壶的速度为"
4
D.碰撞后瞬间,乙壶的速度为V。
3.(多选)质量0=0.5kg的物体甲静止在光滑水平面上,质量未知的
物体乙从甲的左侧以一定的速度与物体甲发生正碰,碰撞时间极短,
磁撞后物体甲和物体乙粘在一起成为一个整体。如图所示,a段为碰
撞前物体乙的位移一时间图像,b段为碰撞后整体的位移一时间图像,
下列说法正确的是()
A.碰撞前物体乙的速度与碰撞后整体的速度大小之比为5:3
B.碰撞过程中物体甲对物体乙的冲量与物体乙对物体甲的冲量大小
相等、方向相反
C.物体甲与物体乙的质量之比为1:2
D.物体甲和物体乙碰撞过程中机械能守恒
4.如图所示,光滑倾斜滑道0M段与粗糙水平滑道MN段平滑连接。质
量为1kg的滑块从0点由静止滑下,滑块运动到N点的速度大小为3
m/s,在N点与竖直缓冲墙发生碰撞,反弹后在距墙1m的P点停下。
第5页共34页
已知。点比M点高1.25m,滑块与MN段的动摩擦因数为0.2,重力加
速度g取10m/s;不计空气阻力。则()
MP
A.滑块运动到M点的速度大小为6m/s
B.缓冲墙对滑块做的功为-5J
C.缓冲墙对滑块的冲量大小为5N-s
D.粗糙滑道MN段长为8m
5.(多选)如图所示,一长为L的传送带水平放置,在电动机的带动下,
以速率v沿逆时针方向匀速运行,在右轮的正上方固定安装与传送带
垂直的挡板;质量为m甲=1kg的甲物块与质量为m乙的乙物块中间夹
有炸药,静止放在光滑的水平桌面上,炸药爆炸所释放的能量E=81J
全部转化为两物块的动能,甲离开桌面做平抛运动,经过t=0.3s落地
时的速率Vt=3VlUm/s,乙以水平向右的速度从左轮的正上方滑上传
送带,与挡板碰撞前后的速率分别为Vi、v2,碰撞时间极短,碰撞生热
Q=22.5J,碰撞后乙向左做匀加速运动,经过t°=4s,运行到左轮的正
上方恰好与传送带共速,乙与传送带之间的动摩擦因数u=0.l,g取
10m/s?,下列说法正确的是()
A.乙的质量m乙=2kg
第6页共34页
B.传送带的速率v=6m/s
C.传送带的长度L=16m
D.乙与挡板碰撞之前的速度vi=14m/s
6.某同学为了研究瞬间冲量,设计了如图所示的实验装置。将内径为
d的圆环水平固定在离地面一定高度的铁架台上,在圆环上放置直径
为1.5d,质量为m的薄圆板,板上放质量为2m的物块,圆板中心、物
块均在环的中心轴线上。对圆板施加指向圆心的瞬间冲量I,物块与
圆板间动摩擦因数为R,不计圆板与圆环之间的摩擦力,重力加速度
为g,不考虑圆板翻转,以下说法正确的是()
A.若物块可以从圆板滑落,则冲量I越大,物块与圆板相对滑动的位
移越大
B.若物块可以从圆板滑落,则冲量I越大,物块离开圆板时的速度越
大
C.当冲量I=m,2〃gd时,物块一定会从圆板上掉落
D.当冲量I=2m质施时,物块一定会从圆板上掉落
7,如图所示,半径为R=5m的[光滑圆弧AB固定在光滑的水平面上,在
C点静止着一个滑块P,载人小车M静止在水平面上的D点。滑块Q从
第7页共34页
A点正上方距A点高H=2.2m处由静止释放,从A点进入圆弧并沿圆
弧运动,Q运动到C点与P发生碰撞,碰撞后P、Q粘合为一个结合体E。
已知Q、P和M的质量分别为此=1kg、m2=5kg、m3=60kg,重力加速
度g取10m/s2o
(1)求P、Q碰撞后的速度大小;
⑵如果结合体E与小车M发生弹性碰撞,求碰撞后小车的速度大小;
(3)如果人每次以v=10m/s的速度(相对地面)将E反向推出,求人最
多能推E多少次。
8.如图所示,在光滑水平面上通过锁定装置固定一质量M=2kg的小车,
小车左边部分为半径R=l.2m的四分之一光滑圆弧轨道,轨道末端平
滑连接一长度L=2.85m的水平粗糙面,粗糙面右端是一挡板。有一个
质量为m=lkg的小物块(可视为质点)从圆弧轨道顶端A点由静止释
放,与水平粗糙面间动摩擦因数n=0.08,小物块与挡板的碰撞无机械
2
能损失,重力加速度g取10m/so
(1)求小物块滑到圆弧轨道末端时轨道对小物块的支持力大小;
(2)若解除小车锁定,求小物块滑到圆弧轨道末端时的速度大小;
第8页共34页
⑶若解除小车锁定,求整个运动过程中物块与小车右端挡板碰撞的
次数以及小车发生的位移大小。
9.(2024•浙江温州十五校联合体高三选考模拟)如图所示,竖直的半
径为R的螺旋圆形轨道BFEGH与直轨道AH和BC在B、H处平滑连接,
倾角为。的斜面CD在C处与直轨道BC平滑连接。在直轨道AH左端
固定连接一轻弹簧,弹簧另一端系一个质量为m的滑块Q,弹簧处于自
然状态。一个质量也为m的滑块P从CD斜面高h处由静止下滑。已
知BC段与滑块P间动摩擦因数n=0.2,轨道其他部分均光滑,直轨道
BC长LBC=1m,m=lkg,9=30°,R=0.2m,g取10m/s:弹簧始终处于
弹性限度内,滑块脱离轨道,不会再落到轨道上。
⑴若滑块P在圆轨道F点的压力刚好为零,求滑块P由静止下滑的高
度h;
⑵滑块P恰好能过E点完成圆周运动与Q发生碰撞,碰撞时间极短,
碰撞后P、Q一起运动,但互不粘连,求P、Q第一次分离时弹簧和滑块
Q系统的机械能;
⑶若滑块P与Q仅发生一次碰撞,求高度h的范围。
10.如图甲所示,平台ON上有一轻质弹簧,其左端固定于竖直挡板上,
右端与质量m=0.5kg、可看作质点的物块A相接触(不粘连),0P段粗
第9页共34页
糙且长度等于弹簧原长。PN段光滑,上面有静止的小滑块B、C,mB=l.5
kg,mc=0.5kg,滑块B、C之间有一段轻弹簧刚好处于原长,B与轻弹簧
连接,滑块C未连接弹簧,两滑块离N点足够远。物块A开始静止于P
点,现对物块施加一个水平向左的外力F,大小随位移x变化关系如图
乙所示。物块A向左运动x=0.4m后撤去外力F,此后物块A向右运
动到离开P点时的速度为v0=4m/s,A与B碰撞后粘合在一起,碰撞时
间极短。滑块C脱离弹簧后滑上倾角。=37°的传送带,并刚好到达传
送带顶端。已知滑块C与传送带之间的动摩擦因数n=0.5,水平面MN
右端N处与倾斜传送带理想连接,传送带以恒定速度v=lm/s顺时针
转动,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。求:
⑴物块A与滑块B碰撞前克服摩擦力做的功;
⑵滑块C刚滑上传送带时的速度;
⑶滑块C滑上传送带到达顶端的过程中,滑块C与传送带之间摩擦产
生的热量。
第10页共34页
11.如图所示,物体A、B质量分别为m=lkg,M=2kg,用轻绳相连并用
弹簧系住挂在天花板上静止不动。某时刻A、B间的绳子被剪断,物体
A上升,B开始下降并从C点进入竖直放置的半径为R=2m的四分之一
光滑圆弧轨道,已知当B以大小为VB的速度下落到轨道上的C处时,A
上升的速度大小为vAo之后物体B在圆弧轨道末端D点与质量为m的
光滑小球发生弹性正碰,碰撞时间极短,且B与小球碰撞前瞬间对轨
道的压力大小为64N,此后B继续滑动直至刚好脱离粗糙水平面DE,B
与DE间的动摩擦因数为0.4。小球在E点水平滑上静止停放在光滑
水平面上质量为m0的弧形槽小车,小车左端的离地高度hEF=0.8m,小
球到达某一高度后(未离开小车)又返回小车左端(A、B小球均可以看
作质点,g取10m/s;忽略空气阻力)。
(1)A上升的速度大小为VA时,求弹簧对物体A的冲量(用题中所给字
母表示);
⑵若B在;圆弧轨道上的运动时间是到C处时间的3倍,求从绳子被
剪断到B落到地面的总时间T;
(3)若小车的质量m0=3kg,求小球在弧形槽小车上到达最高点时的离
地距离H;
(4)若小球从小车左端掉落后的落地点与二者刚脱离时的位置的水平
距离为S=V1Tm,求小车的质量m0o
第11页共34页
2025届高考物理二轮复习:力学三大观点的综合应用学案•教师版
1.力学三大观点对比
力学三大观点对应规律表达式
牛顿第二定律F=ma
v=v0+at
动力学观点匀变速直线
x=v()t,+.-1at,2
2
运动规律
22
v~v0=2ax
动能定理W=AEk
Eki+EPi=
机械能守恒定律
能量观点
Ek2+Ep2
功能关系WG=-AEP
能量守恒定律
EI=E2
动量定理I=p'-p
动量观点
动量守恒定律P1+P2=P1,+P2’
2.选用原则
(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向为匀
变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题。
(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功
能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应
优先选用能量守恒定律。
第12页共34页
(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特
别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求
解。
⑷对于碰撞、爆炸、反冲、地面光滑的板块问题,若只涉及初末速度
而不涉及力、时间,应用动量守恒定律求解。
[例题]如图所示,以v=5m/s的速度顺时针匀速转动的水平传送带,
左端与粗糙的弧形轨道平滑对接,右端与光滑水平面平滑对接,水平
面上有n个位于同一直线上、处于静止状态的相同小球,小球质量
mo=O.2kgo质量m=0.1kg的物体从轨道上高h=4.0m的P点由静止
开始下滑,滑到传送带上的A点时速度大小v0=7m/so物体和传送带
之间的动摩擦因数n=0.5,传送带两端AB之间的距离L=3.4mo物体
与小球、小球与小球之间发生的都是弹性正碰,重力加速度g取
10m/s2,710^3.16o求:
⑴物体从P点下滑到A点的过程中,摩擦力做的功;
⑵物体第一次向右通过传送带的过程中,传送带对物体的冲量大小;
(3)物体第一次与小球碰撞后,在传送带上向左滑行的最大距离;
(4)n个小球最终获得的总动能。
解析:(1)物体从P点下滑到A点的过程中,由动能定理有
1
z?
mgh+Wf=-mvo,
解得Wf=-1.55Jo
第13页共34页
⑵物体滑上传送带后,在滑动摩擦力作用下做匀减速运动,加速度大
2
小a=^£-口g=5m/s;
m
减速至与传送带速度相等时所用的时间
ti=^-^=—s-0.4s,
a5
匀减速运动的位移
x=vo+vt7+5ym=2.4m<L=3.4m,
22
所以物体与传送带共速后向右匀速运动,匀速运动的时间为
故物体从A运动到B的时间为t=ti+t2=0.6s,
传送带对物体的冲量大小为
22
I=l(mgt)+[m(v0-v)]=V0.4N,s
^0.63N•So
⑶物体与小球1发生弹性正碰,设物体反弹回来的速度大小为Vi,小
球1被撞后的速度大小为5,由动量守恒定律和机械能守恒定律得
mv=-mvi+m0Ui,-mv=+5mo〃i,
解■得Vi=|v=|m/s,UI=|V=Ym/s,
物体被反弹回来后,在传送带上向左运动过程中,
2
由运动学公式得0-v1=-2as,
解得s=—m<3.4m
180
(4)由于小球质量均相等,且发生的都是弹性正碰,它们之间将进行速
度交换。由⑶可知,物体第一次返回还没到传送带左端速度就减小为
零,接下来将再次向右做匀加速运动,直到速度增加到V1,再跟小球1
第14页共34页
发生弹性正碰,同理可得,第二次碰撞后,物体和小球的速度大小分别
为
1/1s.2221
V=-Vi=㈠V,U=-Vi=-,-V,
2333233
以此类推,物体与小球1经过n次碰撞后,它们的速度大小分别为
/1\n2/1\n-1
Vn=(-)v,un=-•(-)V,
由于相邻小球之间每次相互碰撞都进行速度交换,所以,最终从1号
小球开始,到n号小球,它们的速度大小依次为Un、Un-1>Un-2、…、Ub
222
则n个小球的总动能为Ek=|m0(Ui+u2+,•,+un),
解得Ek=J(「2)J(n=l,2,3,…)。
49n
答案:(1)-1.55J(2)0.63N•s
(3)Q(%(1募)J(n=l,2,3,…)
[拓展训练1](2024•福建龙岩模拟)如图所示,用长为R的不可伸长
的轻绳将质量为装的小球A悬挂于0点。在光滑的水平地面上,质量
为m的小物块B(可视为质点)置于长木板C的左端静止。将小球A拉
起,使轻绳水平拉直,将A球由静止释放,运动到最低点时与小物块B
发生弹性正碰。
(1)求碰后轻绳与竖直方向的最大夹角。的余弦值;
⑵若长木板C的质量为2m,小物块B与长木板C之间的动摩擦因数
为H,长木板C的长度至少为多大,小物块B才不会从长木板C的上表
面滑出?
第15页共34页
解析:(1)设小球A与小物块B碰前瞬间的速度为vo,则由机械能守恒
定律有:gR募.与孙2,设碰后小球A和小物块B的速度分别为0和V2,
由动量守恒定律和机械能守恒定律有
mm
—v=—vi+mv,
3032
1m71m7,17
-•—Vn-->—Vi+-mvz,
23u2312z?
联立解得Vk-萼,
设碰后小球A能上升的最大高度为H,由机械能守恒定律有
m1mn
TgTHT=2,,
所求COSo=?,
联立解得cos9=|o
4
(2)法一由⑴可求得碰后小物块B的速度为
$4颉,设小物块B与长木板C相互作用达到的共同速度为v,长木
板C的最小长度为L,
有mv2=(m+2m)v,
22
口mgL=|mv2-|(m+2m)v,
联立解得L=^
6〃o
法二由⑴可求得碰后小物块B的速度为V2=:J而瓦设小物块B运
动的位移为小时,小物块B、长木板C达到共同速度v,此时长木板C
22
运动的位移为x2,对小物块B有口mg=maB,v2-v=2aBXi,对长木板C有
2
Rmg=2mac,v=2acx2,—=^-^,长木板C的最小长度L=xrx2,联立解得
初aB
L=—o
6〃
答案:(1),(2)『
46〃
第16页共34页
[拓展训练2]如图所示,粗糙水平面上固定一足够长且表面光滑的斜
面体,斜面倾角。未知,在斜面体内部埋置了一个与斜面平行的压力
传感器,且示数为零。水平面上靠近斜面体处静止放置A、B两物体,
其中n)A=lkg,mB=2kg,两物体紧贴在一起,中间夹着一小块炸药(质量
可忽略),点燃炸药发生爆炸使两物体脱离,B物体立刻冲上斜面体,经
过压力传感器时,测得传感器上表面受到的压力大小为16N,已知A
物体与水平面间的动摩擦因数JF0.5,炸药爆炸时释放的化学能为
E=27J且全部转化为两物体的动能,不考虑B物体在斜面体与水平面
连接处的动能损失,A、B两物体均可视为质点,爆炸时间极短,重力加
速度g取10m/s2,求:
⑴爆炸后瞬间,A、B两物体获得的速度大小;
(2)B物体在斜面上运动的时间to;
(3)要使B物体能追上A物体,B物体与水平面之间的动摩擦因数H2
的取值范围。
解析:(1)对A、B组成的系统,由于爆炸时间极短,内力极大,满足动量
守恒定律,则有mAVA=mBVB,
由能量守恒定律得£=$1A1^2+58加2,联立解得VA=6m/s,VB=3m/s,
(2)B在斜面上运动时,斜面对传感器的压力
FN=mBgcos9,mBgsin。=n)Ba,从开始向上至回到出发点,全过程的时
间
第17页共34页
九=迪,联立解得to=lSo
a
⑶设A从爆炸后运动至停止的时间为tA,位移为XA,根据动量定理有
2
UimAgtA=mAvA,根据动能定理有-UimAgxA=0-|mAvA,联立可得tA=l.2
s,XA=3.6m,
同理,可得B在水平面上运动的加速度
aB上空吆=P2g,A停止时,B在水平面上的位移
2
XB=VB(tA-to)-|aB(tA-t0)<VB(tA-to)=0.6m,因为XB〈XA,所以B一定是在
A停止运动后才可追上,因此,要使B能追上A,必须满足B在停止运动
前的位移大于或等于A全程位移,即XB'=*2XA,解得(K112W0.125。
2aB
答案:(1)6m/s3m/s(2)1s
(3)0<n2<0.125
增分训练2力学三大观点的综合应用
1.有两个动能相同的物体a和b在粗糙的水平面上运动,经相同时间
都停了下来。其中物体a的质量较大,a和b与水平面间的动摩擦因
数分别为口a和lb,a和b的位移分别为Xa和Xb,贝!J(D)
A.Ra>Rb且Xa<Xb
B.Ra>Ub且Xa>Xb
C.Ra〈口b且Xa>Xb
D.口a〈口b且Xa〈Xb
第18页共34页
解析:由动量定理Limgt=mv=72mEk,即u=/J誉因物体a的质量较
大,则Ra〈口b,由动能定理Ek=口mgx,解得x=t匡因物体a的质量较
72m
大,则Xa<Xb,故选Do
2.如图,某次冰壶比赛,甲壶以速度V。与静止的乙壶发生正碰。已知冰
面粗糙程度处处相同,两壶完全相同,从碰撞到两壶都静止,乙的位移
是甲的9倍,则(C)
甲。O乙
»
A.两壶碰撞过程无机械能损失
B,两壶碰撞过程动量变化量相同
C.碰撞后瞬间,甲壶的速度为也
4
D.碰撞后瞬间,乙壶的速度为vo
解析:两壶碰撞后在冰面上滑行,则有a=竺㈣=Rg,两壶完全相同,从
m
碰撞到两壶都静止,乙的位移是甲的9倍,设碰撞后两壶的速度分别
是vi和V%根据运动学关系0-v=-2ax,得vi:v2=l:3。根据动量守恒
定律得mv=mvi+mv,解得VF—,v=—,C正确,D错误;两壶碰撞过程机
02424
械能的变化量为△2+|mv2-|mv2=-^mv2,机械能有损失,A错
zZ2z0160
误;动量的变化量是矢量,两壶碰撞过程动量变化量大小相同但方向
相反,B错误。
3.(多选)质量®=0.5kg的物体甲静止在光滑水平面上,质量未知的
物体乙从甲的左侧以一定的速度与物体甲发生正碰,碰撞时间极短,
第19页共34页
磁撞后物体甲和物体乙粘在一起成为一个整体。如图所示,a段为碰
撞前物体乙的位移一时间图像,b段为碰撞后整体的位移一时间图像,
下列说法正确的是(BC)
A.碰撞前物体乙的速度与碰撞后整体的速度大小之比为5:3
B.碰撞过程中物体甲对物体乙的冲量与物体乙对物体甲的冲量大小
相等、方向相反
C.物体甲与物体乙的质量之比为1:2
D.物体甲和物体乙碰撞过程中机械能守恒
解析:因x-t图像的斜率表示速度,可知碰撞前乙的速度v=;1m/s=6
m/s,碰撞后整体的速度v,m/s=4m/s,碰撞前物体乙的速度与
2-1
碰撞后整体的速度大小之比为3:2,选项A错误;碰撞过程中物体甲
对物体乙的冲量与物体乙对物体甲的冲量大小相等、方向相反,选项
B正确;由动量守恒定律可得1112V=(nh+ni2)v',解得ni2=lkg,则物体甲
与物体乙的质量之比为1:2,选项C正确;碰撞过程中机械能损失△
2/
E=|m2v-|(m1+m2)v=6J,即物体甲和物体乙碰撞过程中机械能不守
恒,选项D错误。
4.如图所示,光滑倾斜滑道0M段与粗糙水平滑道MN段平滑连接。质
量为1kg的滑块从。点由静止滑下,滑块运动到N点的速度大小为3
m/s,在N点与竖直缓冲墙发生碰撞,反弹后在距墙1m的P点停下。
第20页共34页
已知。点比M点高1.25m,滑块与MN段的动摩擦因数为0.2,重力加
速度g取10m/s;不计空气阻力。则(C)
MP
A.滑块运动到M点的速度大小为6m/s
B.缓冲墙对滑块做的功为-5J
C.缓冲墙对滑块的冲量大小为5N-s
D.粗糙滑道MN段长为8m
2
解析:0点到M点,由动能定理得mgh=|mvM,解得2gh=5m/s,A
错误;由N点到P点,设NP段长度为s,从N点弹回的速度大小为v/,
/2
由动能定理得-Umgs=0-|mvN,解得vj
-72^=72X0.2X10X1m/s=2m/s,设缓冲墙对滑块做的功为W,
z22
由动能定理得W=|mvN-|mvw=-2,5J,B错误;设水平向左为正方向,
由动量定理得I=HIVN'-HIVN)=5N-s,C正确;设MN段长度为x,M点
22
到N点,由动能定理得-Rmgx=|mvw-|mvM,解得x=4m,D错误。
5.(多选)如图所示,一长为L的传送带水平放置,在电动机的带动下,
以速率v沿逆时针方向匀速运行,在右轮的正上方固定安装与传送带
垂直的挡板;质量为m甲=1kg的甲物块与质量为m乙的乙物块中间夹
有炸药,静止放在光滑的水平桌面上,炸药爆炸所释放的能量E=81J
全部转化为两物块的动能,甲离开桌面做平抛运动,经过t=0.3s落地
时的速率Vt=3VlUm/s,乙以水平向右的速度从左轮的正上方滑上传
送带,与挡板碰撞前后的速率分别为Vi、v2,碰撞时间极短,碰撞生热
Q=22.5J,碰撞后乙向左做匀加速运动,经过t°=4s,运行到左轮的正
第21页共34页
上方恰好与传送带共速,乙与传送带之间的动摩擦因数n=0.1,g取
10m/s2,下列说法正确的是(BC)
量H
苜(p-(p
<----------------------L------------------------->
/乃〃〃力/力〃〃〃〃〃〃〃〃〃〃〃〃〃〃/力〃加
A.乙的质量m乙=2kg
B.传送带的速率v=6m/s
C.传送带的长度L=16m
D.乙与挡板碰撞之前的速度vi=14m/s
解析:设炸药爆炸后,甲、乙获得的速率分别为v甲、v乙,由动量守恒
定律有m甲v甲二m乙v乙,由能量守恒定律有E=|m甲〃甲?十为乙力乙2,由平抛
运动的规律Vt=J(gt)2+=甲2,联立解得m乙=1kg,v乙=9m/s,A错误;
乙滑上传送带后向右做匀减速运动,由匀变速直线运动的规律
七2一%2=2口gL,碰撞后乙向左做匀加速直线运动,由匀变速直线运
222
动的规律V-V2=2RgL,v=iigt0+v2,碰撞生热Q=|m乙%2_5^v2,联立
解得Vi-7m/s,V2=2m/s,v=6m/s,L=16m,B、C正确,D错误。
6.某同学为了研究瞬间冲量,设计了如图所示的实验装置。将内径为
d的圆环水平固定在离地面一定高度的铁架台上,在圆环上放置直径
为L5d,质量为m的薄圆板,板上放质量为2m的物块,圆板中心、物
块均在环的中心轴线上。对圆板施加指向圆心的瞬间冲量I,物块与
第22页共34页
圆板间动摩擦因数为U,不计圆板与圆环之间的摩擦力,重力加速度
为g,不考虑圆板翻转,以下说法正确的是(D)
A.若物块可以从圆板滑落,则冲量I越大,物块与圆板相对滑动的位
移越大
B.若物块可以从圆板滑落,则冲量I越大,物块离开圆板时的速度越
大
C.当冲量I=mj2〃gd时,物块一定会从圆板上掉落
D.当冲量I=2m痛施时,物块一定会从圆板上掉落
解析:设圆板获得的速度大小为Vo,物块掉下时,圆板和物块的速度大
小分别为V1和V2,I=mv0,当物块恰好运动到圆板左边缘时,有
2z2
mv0=(m+2m)v',|mv0X3mv=u•2mg•?,联立解得I=^m.j2p.gd,
当时,物块一定会从圆板上掉落,故C错误,D正确;若物块
可以从圆板滑落,二者的相对位移大小始终为乳,故A错误;冲量越
大,V。越大,发生(相对位移所用的时间t越短,由v=at可知物块离开
圆板时的速度越小,故B错误。
7.如图所示,半径为R=5m的;光滑圆弧AB固定在光滑的水平面上,在
C点静止着一个滑块P,载人小车M静止在水平面上的D点。滑块Q从
A点正上方距A点高H=2.2m处由静止释放,从A点进入圆弧并沿圆
弧运动,Q运动到C点与P发生碰撞,碰撞后P、Q粘合为一个结合体E。
第23页共34页
已知Q、P和M的质量分别为mi=lkg、m2=5kg、m3=60kg,重力加速
2
度g取10m/so
(1)求P、Q碰撞后的速度大小;
⑵如果结合体E与小车M发生弹性碰撞,求碰撞后小车的速度大小;
⑶如果人每次以v=10m/s的速度(相对地面)将E反向推出,求人最
多能推E多少次。
解析:⑴滑块Q自由下落到与P发生碰撞前瞬间,据动能定理可得
z
niLg^+R)=-miVQ,
Q与P碰撞过程,根据动量守恒定律可得
ID1VQ=(mi+m2)Vo,
联立解得P、Q碰撞后的速度大小为
VQ—2m/so
⑵结合体E与小车M发生弹性碰撞,根据动量守恒定律及机械能守恒
定律可得
(mi+m2)v0=(mi+m2)Vi+m3v2,
2=22
|(mi+m2)v0|(mi+m2)v1+|m3v2,
联立解得V2=m/so
(3)结合体E以v。向右运动的过程以及人第一次推E的过程,以向右为
正方向,据动量守恒定律可得(mi+m2)v0=-(mi+m2)v+m3v2i,
第24页共34页
以后每次推出过程,小车的动量变化量为
Ap=2(mi+ni2)v,推出n次后,小车的动量为
m3V2n=m3v2i+(n-l)Ap,
当人推结合体n次后,小车的速度大于等于v,人就无法再推E,即v2n
2v,
联立解得nN5.4,
即人最多能推结合体6次。
答案:⑴2m/s⑵三m/s(3)6
8.如图所示,在光滑水平面上通过锁定装置固定一质量后2kg的小车,
小车左边部分为半径R=l.2m的四分之一光滑圆弧轨道,轨道末端平
滑连接一长度L=2.85m的水平粗糙面,粗糙面右端是一挡板。有一个
质量为m=lkg的小物块(可视为质点)从圆弧轨道顶端A点由静止释
放,与水平粗糙面间动摩擦因数n=0.08,小物块与挡板的碰撞无机械
2
能损失,重力加速度g取10m/so
(1)求小物块滑到圆弧轨道末端时轨道对小物块的支持力大小;
⑵若解除小车锁定,求小物块滑到圆弧轨道末端时的速度大小;
(3)若解除小车锁定,求整个运动过程中物块与小车右端挡板碰撞的
次数以及小车发生的位移大小。
第25页共34页
解析:(1)小车被固定,小物块下滑到圆弧轨道末端过程由动能定理得
mgR=-1mv2-0,
2
在最低点有FN-mg=m^,
解得FN=3mg=30No
(2)解除固定后,小车可以在光滑水平面上自由运动,小物块和小车组
成的系统水平方向动量守恒,设小物块刚滑上右侧水平粗糙面时速度
大小为Vi,小车速度大小为v2,则有
22
mgR^mv-L+|MV2,
mvi-Mv2=0,
解得Vi=4m/so
⑶从小物块滑下到最终相对小车静止,小物块在小车水平粗糙面上
滑动的路程为
mgR=umgs,
解得s=-=15m,
林
设碰撞n次,则有s=(2n-l)L+Ax,
可得当n=3时Ax=0.75m,
即物块与挡板碰撞n=3次,将停在离开右侧挡板0.75m处;
物块相对小车停下时,小车也停止运动,整个过程中,物块相对小车发
生的位移为
x总二口+1Ax=3.3m,
第26页共34页
选取物块和小车为系统,由于水平方向动量守恒,设物块水平向右发
生位移大小为X1,小车水平向左发生位移大小为X2,由mvkMV2可得
mxi=Mx2,又xi+x2=x总,
解得x=-^-x总=1.1m
2m+Mo
答案:⑴30N(2)4m/s(3)3次1.1m
9.(2024•浙江温州十五校联合体高三选考模拟)如图所示,竖直的半
径为R的螺旋圆形轨道BFEGH与直轨道AH和BC在B、H处平滑连接,
倾角为。的斜面CD在C处与直轨道BC平滑连接。在直轨道AH左端
固定连接一轻弹簧,弹簧另一端系一个质量为m的滑块Q,弹簧处于自
然状态。一个质量也为m的滑块P从CD斜面高h处由静止下滑。已
知BC段与滑块P间动摩擦因数n=0.2,轨道其他部分均光滑,直轨道
BC长LBC=1m,m=lkg,0=30°,R=0.2m,g取10m/s:弹簧始终处于
弹性限度内,滑块脱离轨道,不会再落到轨道上。
AHC
⑴若滑块P在圆轨道F点的压力刚好为零,求滑块P由静止下滑的高
度h;
⑵滑块P恰好能过E点完成圆周运动与Q发生碰撞,碰撞时间极短,
碰撞后P、Q一起运动,但互不粘连,求P、Q第一次分离时弹簧和滑块
Q系统的机械能;
⑶若滑块P与Q仅发生一次碰撞,求高度h的范围。
第27页共34页
解析:(1)滑块P在圆轨道F点的压力刚好为零,则vF=0,从开始下滑到
F点,由动能定理得
mg(h-R)-口mgLBc=O,
解得h=0.4m。
⑵设滑块P与Q碰撞前速度为vo,在最高点E有
2
mg=m^-,从最高点E到碰撞前,由动能定理得
22
mg・2R=|mv0-|mvE,
解得Vo=JSgR,
设P、Q碰撞后共同速度为v,由动量守恒定律得
mv0=2mv,解得v=y,
弹簧原长处P、Q分离,分离时P和Q的动能均为
22
Ek=1mv=1mv0,
Zo
分离时弹簧和滑块Q系统的机械能为Q的动能
2
E=^mv0=|mgR=l.25J。
⑶由于滑块脱离轨道,不会再落到轨道上,所以滑块P、Q恰好发生一
次碰撞的条件是P能过E点且与Q碰撞后恰好通过与0等高的G点。
设滑块P与Q碰撞后的速度大小为vb由机械能守恒定律得二mgR,
由⑵知滑块P与Q碰撞前的动能Ekk4义勺%2,
设滑块P开始下滑的最小高度为hb对小滑块P从开始下滑到与Q碰
撞,由动能定理可得
mghi-LimgLBc=Eki-O,
解得hi=lm,
第28页共34页
从E点到与Q有碰撞ZHigRuEkifiVE,;
VE'=2y[gR>y[gR,
满足恰好发生一次碰撞的条件。
小滑块P、Q能发生二次碰撞的条件是P、Q第一次碰撞后P到达G点
时速度恰好为零(前面已经讨论)或P恰好能第三次通过E点,在P恰
好第三次通过E点的情况下,设小滑块P与Q第一次碰撞后的速度大
22
小为V2,则由动能定理得-mg•2R-Umg•2LBc=|nivE-|niv2,
2
小滑块P与Q第一次碰撞前的动能Ek2=4x1mv2,
设小滑块P开始下滑的最大高度为h2,由动能定理可得mgh2-H
mgLBc=Ek2-0,解得h2=3.8m,所以小滑块P、Q仅发生一次碰撞,高度h
的取值范围为1m<h<3.8mo
答案:(1)04m(2)1.25J(3)1m<h<3.8m
10.如图甲所示,平台ON上有一轻质弹簧,其左端固定于竖直挡板上,
右端与质量m=0.5kg、可看作质点的物块A相接触(不粘连),0P段粗
糙且长度等于弹簧原长。PN段光滑,上面有静止的小滑块B、C,mB=l.5
kg,mc=0.5kg,滑块B、C之间有一段轻弹簧刚好处于原长,B与轻弹簧
连接,滑块C未连接弹簧,两滑块离N点足够远。物块A开始静止于P
点,现对物块施加一个水平向左的外力F,大小随位移x变化关系如图
乙所示。物块A向左运动x=0.4m后撤去外力F,此后物块A向右运
动到离开P点时的速度为v0=4m/s,A与B碰撞后粘合在一起,碰撞时
间极短。滑块C脱离弹簧后滑上倾角。=37°的传送带,并刚好到达传
送带顶端。已知滑块C与传送带之间的动摩擦因数u=0.5,水平面MN
第29页共34页
右端N处与倾斜传送带理想连接,传送带以恒定速度v=lm/s顺时针
转动,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。求:
⑴物块A与滑块B碰撞前克服摩擦力做的功;
⑵滑块C刚滑上传送带时的速度;
⑶滑块C滑上传送带到达顶端的过程中,滑块C与传送带之间摩擦产
生的热量。
解析:(1)根据F.x图像可以求外力F做的功为
WF二等X0.2J+18X0.2J=6J,
物块A从开始运动到P点的过程中
2
WF-Wf=|mv0,
解得Wf=2Jo
(2)A与B碰撞,根据动量守恒定律得
mv0=(m+mB)vb
解得Vi=lm/s,
第30页共34页
A、B碰撞后,由动量守恒定律和机械能守恒定律得
(m+mB)Vi=(m+mB)vB+mcVc,
22
|(m+mB)b/=(m+mB)vB+|mcvc,
解得Vc=1.6m/so
(3)C在传送带上减速至与传送带共速过程中
mcgsin9+umcgcos0=mcai,
解得ai=10m/s2,贝I]
ai
此过程C与传送带之间的相对位移是
AXi=^y^ti-Vti,
解得Axi=0.018m,
Qi=口mcgcos9•AXi-0.036J,
C与传送带共速后,继续减速滑到顶端
mcgsin0一口mcgcos0=mca2,
2=
解得a?=2m/s,t2—,
此过程c与传送带之间的相对位移是
AV
△X2=vt2--t2,
解得Ax2=0.25m,
则Q2=Pmcgcos9,Ax2=0.5J,
摩擦产生的总热量为Q=QI+Q2=0.536JO
答案:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 4 What can you do?(教学设计)-2023-2024学年人教PEP版英语五年级上册
- 《国内专家动画模板》课件
- 《沃尔玛价格策略》课件
- 《数据分析技巧简介》课件
- 2025年崇左从业资格证货运考试答案
- 2025建筑用地买卖合同协议书
- 2025年拉萨货运从业资格证模拟考试答案
- 2025年伊犁普通货运从业资格证模拟考试
- 《实践导向型教学》课件
- 2025年自动离职等同于合同解除:探究劳动合同的终止规定
- 病原微生物实验室生物安全检查表格
- 鲜肉切片机设计说明书
- 2018年USB数据线检验规范资料
- 厂房及配套设施工程建设项目施工组织设计方案
- 校园管制刀具排查记录表
- 3 春夜喜雨课件(共16张PPT)
- DB32∕T 3921-2020 居住建筑浮筑楼板保温隔声工程技术规程
- 基桩低应变检测2
- 中长期人才队伍建设战略规划
- 图解副热带高压
- 铝合金脚手架操作规程
评论
0/150
提交评论