初中数学说课稿大集合1_第1页
初中数学说课稿大集合1_第2页
初中数学说课稿大集合1_第3页
初中数学说课稿大集合1_第4页
初中数学说课稿大集合1_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学优秀说课稿大集合

全部说课稿目录

16.3《分式方程解法》说课稿1

17.2《反比例函数》说课稿4

18.1《探索勾股定理》第一课时说课稿9

18.1《勾股定理》说课稿11

《勾股定理》说课稿

18.2《勾股定理的逆定理》说课稿16

19.1《平行四边形》的说课稿21

19.2.2《菱形(1)定义与性质》说课稿24

20.2《数据的波动》说课稿(第一课时)27

《除法》说课稿30

《矩形》(第一课时)说课稿34

《实际问题与反比例函数(第三课时)》教案说明37

《平行四边形的判定(1)》说课稿41

《分式的意义》说课稿44

“形的判定”说课稿菱形(第2课时)48

16.3《分式方程解法》说课稿

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”

从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度

上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从

师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学

生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:

一、根据学生的年龄特征和认知特点组织教学。

二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理

解数学。2、培养学生应用数学的意识和提高解决问题的能力。

三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、

鼓励学生解决问题策略的多样化。

四、教师对教学目标,难点,重点把握要恰当、具体。

数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算

的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方

法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。

一、设计思想:

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活

的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动

手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学

生的动手能力和创新能力,丰富

和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学

之美。

处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活

动。

根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见

的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。

充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主

动的探索发现式学习。

数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,

符合《课标》精神。

网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提

二、背景分析:

(一)学情分析:

内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识

较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数

学课,学习数学的兴趣较浓。

(―)内容分析:

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进

行的,为后面学习可化为一元二次方程的分式方程打下基础。

通过经历实际问题一列分式方程一探究解分式方程的过程,体会分式方程是

2

一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意

识,渗透类比转化思想。

(三)教学方式:自学导读一同伴互助一精讲精练

(四)教学媒体:MideaClass纯软多媒体教学网几何画板

三、教学目标:

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生

增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题一列分式方程一探究解分式方程的过程,体会分式

方程是•种有效描述现实世界的模型,发展学生分析问题解决问题的

能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用

知识解决问题的成功体验,树立学好数学的自信心。

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教

学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼

阁,雾里看花,水中望月。

四、板书设计:

a不是分式方程的解

(~)学习方法:类比与转化

教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,

绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有

效途径之『。

五、教学过程:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启

迪。

设计说明:通过经历实际问题一列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学

生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准

备。

3

活动2:总结定义,探究解法

使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养

学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎

每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用

媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合

学生实际认知水平,不要任意拔高.三、拓展内容要适量,不要信息过载。

活动3:讲练结合,分析增根

活动5:布置作业,深化巩固(略)

17.2反比例函数说课稿

一,教材分析:

反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。

本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,

所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二“教学目标分析

根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计

上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究

欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学

会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引

导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参

与和勇于探索的精神。

三、教学重点难点分析

本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;

难点则是如何抓住特征准确画出反比例函数的图象。

为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积

极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

四、教学方法

鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法

4

和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已

有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动

学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究一

一讨论一交流一总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,

观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

五、学法指导

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、

对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知

识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学

的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

六、教学过程

(-)复习引入一反函数解析式

练习1:写出下列各题的关系式:

(1)正方形的周长C和它的一边的长a之间的关系

(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程

s和所用时间t之间的关系

(3)矩形的面积为10时,它的长x和宽y之间的关系

(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

k

通过问题2来引出反比例函数的解析式y=—(左片0),请学生对比正比例函数的定

X

义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和

探究能力。

例题1:已知变量y与X成反比例,且当」x=2时,y=9

(1)写出y与x之间的函数解析式

(2)当x=3.5时,求y的值

(3)当y=5时,求x的值

通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在

5

解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为

k

丫二一(左。0),再把相应的X,y值代入求出k,k值的确定,函数解析式也就确定了。

X

课堂练习:已知X与y成反比例,根据以下条件,求出y与X之间的函数关系式

1

(1)x=2,y=3(2)x=—,y=-44

2

通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的

反馈。

(二)探究学习1——函数图象的画法

问题3:如何画出正比例函数的图象?

通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比

例函数图像的画法打下基础。

问题4:那反比例函数的图象应该怎样去画呢?

在教学过程中可以引导学生仿照正比例函数图象的的画法。

设想的教学设计是:

(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采

88

用列表、描点、连线的方法画出函数y=一和y=一—的图象;

xx

(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典

型错误,和学生一起找出错误的地方,分析原因;

(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,

引导学生观察其图象特征(双曲线有两个分支)。

初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

(1)在“列表”这一环节

在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在

取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取

值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可

以简化计算的手续,又便于在坐标平面内找到点。

(2)在“连线”这一环节

学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将

所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清

晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到

6

较多的“点”,画出曲线。

从而引导学生画出正确的函数图象。

(3)图象与x轴或y轴相交

在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。

需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,

尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在

黑板上认真示范画出图象的每•个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。

_66

巩固练习:回出函数y=—和y=——的图象

xx

通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数

图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。

O探究学习2——函数图象性质

1、图象的分布情况

问题5:请大家回忆一下正比例函数y=kx(k丰0)的分布情况是怎么样的呢?

提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。

问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又

是怎么样的呢?

在这一环节中的设计:

(1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生

充分考虑的时间;

(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函

数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生

对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;

(3)组织小组讨论来归纳出反比例函数的一条性质:当k〉0时,函数图象的两支分别在第一、

三象限内;当k〈0时,函数图象的两支分别在第二、四象限内。

2、图象的变化情况

问题7:正比例函数y=kx(k丰0)图象的变化情况是怎么样的呢?

提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。

问题8:那反比例函数的图象,是否也具有这样的性质呢?

7

在这一环节的教学设计是:

88一

(1)回顾反比例函数丁=一和y=——的图象,通过实际观察;

xx

(2)根据解析式对x进行取值,比较x在取不同值时函数值的变化情况;

(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0

时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随

着逐渐增大。

(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?

若没有,则可以举例:当k>0,分别比较在第三象限x=-2,第一象限x=2时的y的值的大小,则

以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一

个象限内,才有以上性质成立。

问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?

在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例

k

函数的解析式y=—(左。0),由分母不能为零,得X不能为零。由kWO,得y必不为零,从而验

X

证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近X轴、y轴,但永远不会与两轴相

交。随即强调画图时要注意准确性。

(四)备用思考题

CL—3

1、反比例函数y=-----的图象在第一、三象限,求a的取值范围

X

2、y=(m-l)x2ra+3

(1)当m为何值时,y是x的正比例函数

(2)当m为何值时,y是x的反比例函数

(五)小结:

1、通过列表的形式,引导学生小结反比例函数的性质

名称解析式图像图象分布函数变化情况

k>0k<0k>0k<0

正比y=kx(kW0)是一二、四y随xy随x

例函数条经过原象限象限的增大而的增大而

点和(l,k)增大减小

的直线

8

反比y=-(k^O)双曲二、四y随xy随x

X

例函数线象限象限的增大而的增大而

减小增大

2、请学生小结一下我们在画图象的过程中需要大家注意的地方

(1)在列表过程中,x的值不能取0;取值可以由原点向两侧取相反数;

可以适当的多取一些点,方便连线

(2)反比例函数图象是光滑曲线

(3)函数图象只能是无限逼近y轴和x轴,永远不会和两轴相交

(六)作业

基础题:A册习题2L5

提高题:同步72页第14,15,16题

18.1《探索勾股定理》第一课时说课稿

一、教材分析

(一)教材地位

这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾

股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重

要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角二

角形有进一步的认识和理解。

(二)教学目标

知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.

过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推

理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.

情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索

和创造,体验数学的美感,从而了解数学,喜欢数学.

(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

教学难点:用面积法(拼图法)发现勾股定理。

突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索

中领悟、在领悟中理解.

二、教法与学法分析:

9

学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何

图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,

学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境一一建立模型一一解释应用一

拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,

归纳总结的过程。

学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习

的主人.

三、教学过程设计1.创设情境,提出问题2.实验操作,模型构建3.回归生活,应用新知

4.知识拓展,巩固深化5.感悟收获,布置作业

(一)创设情境提出问题

(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树2002年国际数学

的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.

(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如

果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知

识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.

二、实验操作模型构建

L等腰直角三角形(数格子)

2.一般直角三角形(割补)

问题一:对于等腰直角三角形,正方形I、II、HI的面积有何关系?

设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.

问题二:对于一般的直角三角形,正方形I、II、III的面积也有这个关系吗?(割补法是本节的难点,

组织学生合作交流)

设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形

中得到提高.

通过以上实验归纳总结勾股定理.

设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生

的主体作用,体验了从特殊一一般的认知规律.

三.回归生活应用新知

10

让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和

信心.

四、知识拓展巩固深化

基础题,情境题,探索题.

设计意图:给出•组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发

展.知识的运用得到升华.

基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数

学问题?你能解决所提出的问题吗?

设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.

情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58

厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?

设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放

入,为什么?试用今天学过的知识说明。

设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、

发展空间想象能力.

五、感悟收获布置作业:这节课你的收获是什么?

作业:1、课本习题2.12、搜集有关勾股定理证明的资料.

板书设计探索勾股定理

如果直角三角形两直角边分别为a,b,斜边为c,那么

a2+b2=c2

设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特

殊到一般的思想方法.

2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现

出来的思维水平、表达水平.

18.1勾股定理说课稿

一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角

二角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,

11

它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生

获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国

与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、教学难点:勾股定理的证明。

四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,

让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操

作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生

钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,

教学程序设计如下:

(一)创设情境以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三

角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知

识,养成良好的自学习惯。

(三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等

以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某

一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,

12

最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提IWI

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进

一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有

代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、

和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动

活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

勾股定理说课稿

各位专家领导,上午好:今天我说课的课题是《勾股定理》

■、教材分析:(一)本节内容在全书和章节的地位

这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。

勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要

的性质,是几何中最重要的定理之事”它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角

形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题

的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便

于正确的进行运用。

(二)三维教学目标:1.【知识与能力目标】1.理解并掌握勾股定理的内容和证明,能够灵活运用勾

股定理及其计算;2.通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推

理的能力。2.【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”

的数学思想,并体会数形结合和从特殊到一般的思想方法。3.【情感态度与价值观】通过介绍中国古代

勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:【教学重点】勾股定理的证明与运用

【教学难点】用面积法等方法证明勾股定理

【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,

而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和

13

耐挫折能力并不是很成熟,从而形成困难。

【突破措施】:1.创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在

感到“有趣”、“有意思”的状态下进入学习过程;

2.自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更

是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

3.张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书

记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”

展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

二、教法与学法分析

【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其

然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导

探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课

改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置

作业”六个方面。

【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引

导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、

“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

三、教学过程设计

(-)创设情景

多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员

取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问

题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到「些困难,从而老师指出学习

了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也

反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

(二)动手操作

1.课件出示课本P99图19.2.1:

观察图中用阴影画出的二个正方形,你从中能够得出什么结论?

学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现

SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角

14

二角形,其两直角边的平方和等于斜边的平方,即当NC=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于

学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2.紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否

也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正

方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,

再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也

存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于

突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的

能力。

3.再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,

3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,

这样归纳的结论更具有­股性。

(三)归纳验证

【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边

长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生

学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生

的主体作用,真正获取知识,解决问题。

【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、

计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严

谨、科学的学习态度。

(四)问题解决

1.让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

2.自学课本P101例1,然后完成P102练习。

(五)课堂小结

1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互

相比一比,看看哪一个小组表现最佳。

2.教师用多媒体介绍“勾股定理史话”

①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

目的是对学生进行爱国主义教育,激励学生奋发向上。

15

(六)布置作业

课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定

理与实际生活的联系。

以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明

这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的

意见,谢谢!

18.2勾股定理的逆定理说课稿

一、教材分析:(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,

它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形

是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计

算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课

标要求学生必须掌握。

(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定

理的逆定理解决相关问题。

情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理

与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作

的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,

但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求

根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定

理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难

点和关键。

重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明

16

关键:辅助线的添法探索

二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过

巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认

识结构的目的。

(一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课

的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得

到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,

引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说

明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可

以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折

纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角

形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与

所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角

形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全

等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神

秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索一

一论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴

趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养

成学生看书的习惯,这也是在培养学生的自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完

成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往

知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反

17

二的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合

的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同

时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养

能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲

手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习

时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A

组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。

B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,

发展学生的个性有积极作用。

二、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,

根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节

课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,

这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、

分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理

解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联

系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获

取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争

把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

19.1《平行四边形》的说课稿

一、说教材:这节课主要是通过测量操作活动认识平行四边形,了解平行四边形对边平行

且相等,对角相等,并掌握平行四边形底和高的概念,初步会画出平行四边形底上的高。

18

说教法:新教材的引入方法与以往的不同,是采用两条等宽色带进行交叠后产生的四边形来引入平行

四边形的。首先突出的是平行四边形“面”的形象,然后再到“边”(面的边缘)。教学分两两个环节。

第一步是认识平行四边形。让学生观察两条互相平行的透明色带交叠出的四边形,进而观察这些四边形的

特点。学生通过操作、比较、思考后发现:这些四边形的两组对边分别平行,然后引导学生小结平行四边

形的定义,并给出数学记号。让学生找生活中的平行四边形的例子,一方面可以丰富对平行四边形的表象,

另一方面加深学生“对两组对边分别平行”的认识。

第二步是认识平行四边形的底和高。平行四边形的底和高是相对的,而非绝对的。平行四边形的任何

一条边都可以为底边,那么从底边的对边上的一点出发做底边的垂线,该点与垂足之间的线段就是该底边

上的高。然而“高”的概念对学生来说不容易建立,以为学生在生活经验中的高,往往是身高、树高、塔

高等,指的是直立于地面上的对象的高度,隐含着垂直的定义。因此教材中,我从垂线这一概念引入,再

通过垂线段建立起高的概念,同时进行操作观察,这些高的位置与关系。从中得出:同一底边上可以画出

无数条高,这些高的长度都相等,但在一般情况下,我们只要作一条高就可以了。并在此基础上进行拓展,

如形外高的操作,或者底不是水平方向的怎样操作高等,从而拓宽了学生对平面图形中“高”的认识。

19.1平行四边形

[知识与能力目标]:1、通过操作活动认识平行四边形。2、掌握平行四边形底和高的概念,并初步会画

出平行四边形底上对应的高。

[过程与方法]

[情感目标]:让学生享受学习的快乐,分享成功的喜悦。【教学重点】:会画出平行四边形底上对应的

高。【教学难点】:会画出平行四边形底上对应的【教学过程】

一、创设情景、激发兴趣

1、同学们,你们认识了哪些几何图形?这些几何图形在我们的生活中随处可见。它使我们的生活更加

丰富多彩。

2、出示发现什么?------出现了一个新的四边形

这个四边形有什么特殊呢?今天我们就来研究一下。

板书:平行四边形

二、新课探究

1、师:根据你对平行四边形的认识,请你选择小棒摆一个平行四边形。指名学生用实投展示,组织

学生评价。

2、师:打开学具袋,从中找到平行四边形。

3、问:请你们将学习小组找到的平行四边形放在一起,观察一下,看看你能发现什么?

19

提出要求:四人一组,充分利用学具,开动脑筋,想办法,共同探讨。小组汇报,集体交流。归

纳概括平行四边形的特征。

问:我们通过观察、动手操作,用自己的方法发现了平行四边形的特征,那什么是平行四边形呢?你

能用自己的话说一说吗?

小结:

两组对边分别平行的四边形叫做平行四边形。

4、出示图片图上的物体都是我们经常见到的,推拉铁门、栏杆、标志、花窗。这些物体中都隐藏着

平行四边形,你能把它找出来吗?

5、判断:下面的图形是不是平行四边形?

判断一个图形是不是平行四边形,你认为关键是什么?

三、平行四边形的底与高

行四边形的底与高

1、学生在作业纸上自己试画平行四边形的高。

2、教师指导板书画高的方法。

问:通过画高,你有什么新的发现?

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论