河北省保定市满城区实验中学2023-2024学年中考联考数学试题含解析_第1页
河北省保定市满城区实验中学2023-2024学年中考联考数学试题含解析_第2页
河北省保定市满城区实验中学2023-2024学年中考联考数学试题含解析_第3页
河北省保定市满城区实验中学2023-2024学年中考联考数学试题含解析_第4页
河北省保定市满城区实验中学2023-2024学年中考联考数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市满城区实验中学2023-2024学年中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.242.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③3.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)4.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.5.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A. B. C. D.6.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.7.在实数,有理数有()A.1个 B.2个 C.3个 D.4个8.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或9.已知方程x2﹣x﹣2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A.﹣3 B.1 C.3 D.﹣110.下列计算正确的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p二、填空题(共7小题,每小题3分,满分21分)11.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答:________.12.如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.13.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.14.分解因式:a2-2ab+b2-1=______.15.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.16.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.17.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.三、解答题(共7小题,满分69分)18.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.19.(5分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.20.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).21.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.22.(10分)阅读下列材料,解答下列问题:材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c2﹣6c+8分解因式;(2)结合材料1和材料2完成下面小题:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.23.(12分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.24.(14分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.2、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、A【解析】∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴点P的坐标为(3,﹣4).故选A.4、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.5、B【解析】

首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;设AE=x,则BF=x,DE=AF=1,∵四边形ABED的面积为6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故选B.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.6、B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。∴当点M位于点A处时,x=0,y=1。①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。故选B。7、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D.考点:有理数.8、B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9、D【解析】分析:根据一元二次方程根与系数的关系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2计算即可.详解:由题意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.10、D【解析】

直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.【详解】解:A.﹣5x﹣2x=﹣7x,故此选项错误;B.(a+3)2=a2+6a+9,故此选项错误;C.(﹣a3)2=a6,故此选项错误;D.a2p÷a﹣p=a3p,正确.故选D.【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.12、18【解析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.13、1﹣1【解析】

如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=1,即可求出B′D.【详解】如图所示点B′在以E为圆心EA为半径的圆上运动,当D、B′、E共线时时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.14、(a-b+1)(a-b-1)【解析】

当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.15、360°.【解析】

根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.16、【解析】

坡度=坡角的正切值,据此直接解答.【详解】解:∵,∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.17、1【解析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.三、解答题(共7小题,满分69分)18、(1);(2)不能成为平行四边形,理由见解析【解析】

(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;

(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.【详解】解:(1)∵点在直线上,∴.∵点在的图像上,∴,∴.设,则.∵∴.记的面积为,∴.(2)当点为中点时,其坐标为,∴.∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,∴,∴,∴与不能互相平分,∴四边形不能成为平行四边形.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.19、(1)10;(2);(3)9环【解析】

(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:,方差为:.(3)原来7次成绩为7899101010,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.20、(1).(2)公平.【解析】

试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:

A

B

C

D

A

(A,B)

(A,C)

(A,D)

B

(B,A)

(B,C)

(B,D)

C

(C,A)

(C,B)

(C,D)

D

(D,A)

(D,B)

(D,C)

共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.21、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB

D′=∠ABD,B

D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB

D′=∠ABD,B

D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】

(1)根据材料1,可以对c2-6c+8分解因式;(2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.【详解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1设a-b=t,则原式=t2+2t+1=(t+1)2,则(a-b)2+2(a-b)+1=(a-b+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论