5.5用二次函数解决问题苏科版初中数学九年级下册同步练习【含试卷答案】_第1页
5.5用二次函数解决问题苏科版初中数学九年级下册同步练习【含试卷答案】_第2页
5.5用二次函数解决问题苏科版初中数学九年级下册同步练习【含试卷答案】_第3页
5.5用二次函数解决问题苏科版初中数学九年级下册同步练习【含试卷答案】_第4页
5.5用二次函数解决问题苏科版初中数学九年级下册同步练习【含试卷答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.5用二次函数解决问题苏科版初中数学九年级下册同步练习第I卷(选择题)一、选择题(本大题共12小题,共36分。在每小题列出的选项中,选出符合题目的一项)1.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为

(

)

A. B.

C. D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x⩽2),ΔBPH的面积为S,则能反映S与x之间的函数关系的图象大致为

A. B.

C. D.3.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200−x)件,若想获得最大利润,则x应定为(

)A.150元 B.160元 C.170元 D.180元4.某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利24元,市场调查发现:在以标价打八折为销售价的基础上,该种商品每星期可卖出220件,该种向品每降价1元,每星期可多卖20件.设每件商品降价x元(x为整数),每星期的利润为y元.以下说法错误的是(

)A.每件商品进价为40元

B.降价后每件商品售价为(64−x)元

C.降价后每周可卖(220+20x)件

D.每星期的利润为y=(84−x)(220+20x)5.心理学家发现:课堂上,学生对概念的接受能力s与提出概念的时间t(单位:min)之间近似满足函数关系s=at2+bt+c(a≠0),s值越大,表示接受能力越强.如图记录了学生学习某概念时t与s的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为

(

)

A.8 min B.13 min C.20 min D.25 min6.一个弹性球从地面竖直向上弹起时的速度为6米/秒,经过t秒时,球距离地面的高度ℎ(米)满足公式ℎ=6t−5t2,那么球弹起后又回到地面所花的时间t是(

)A.0.6 B.1 C.1.2 D.27.某水利工程公司开挖的沟渠,蓄水之后截面呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m).某学习小组探究之后得出如下结论,其中正确的为(

)

A.AB=24m

B.池底所在抛物线的解析式为y=125x2−5

C.池塘最深处到水面CD的距离为8.如图,从地面竖直向上抛出一个小球,小球的高度ℎ(m)与小球运动时间t(s)之间的表达式为ℎ=30t−5t2,那么小球从抛出至落回到地面所需要的时间是(

)

A.6s B.4s C.3s D.2s9.在某市治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为8m的正方形ABCD,改建的绿地的是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE.那么当BE为多少时,绿地AEFG的面积最大?(

)A.1m

B.2m

C.3m

D.4m10.如图,一座拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,请根据所给的数据,则支柱MN的长度为(

)A.4.5 B.5 C.5.5 D.611.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间t(单位:s)之间具有函数关系ℎ=20t−5t2.下列叙述正确的是(

)

A.小球的飞行高度只有在3s时达到15m B.小球的飞行高度可以达到40m

C.小球从飞出到落地要用时5s D.小球飞出1.2s时的飞行高度为16.8m12.一个直角三角形的两条直角边长的和为20 cm,其中一条直角边长为xcm,三角形的面积为ycm2,则y与x之间的函数解析式为

.(

)A.y=10x B.y=x(20−x) C.y=12x(20−x)第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,一位篮球运动员投篮,球沿抛物线y=−0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是

m.

14.如图,某中学综合与实践小组要围成一个矩形菜园ABCD,其中一边AD靠墙,其余的三边AB,BC,CD用总长为40米的栅栏围成.设矩形ABCD的边AB=x米,面积为S平方米.(1)活动区面积S与x之间的关系式为

;(2)菜园ABCD最大面积是

平方米.15.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t−32t2.在飞机着陆滑行中,最后3s滑行的距离是16.某抛物线形隧道的最大高度为16米,跨度为40米,按如图所示的方式建立平面直角坐标系,它对应的表达式为______.三、解答题(本大题共9小题,共72分。解答应写出文字说明,证明过程或演算步骤)17.(本小题8分)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运动的轨迹为抛物线,篮圈距地面

18.(本小题8分)如图,用一段长为20m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长10m.设AB长为x m,矩形的面积为ym2.问:当

19.(本小题8分)

商场销售某品牌牛奶,已知进价为每箱40元.经市场调研,售价为50元时,可销售90箱;售价每提高5元,销售量将减少15箱.当每箱售价为多少元时,才能使利润最大?最大利润是多少元?20.(本小题8分)

超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.

(1)请写出y与x之间的函数表达式;

(2)当x为多少时,超市每天销售这种玩具可获利润2250元?

(3)设超市每天销售这种玩具可获利w元,当x为多少时,w最大,最大值是多少?21.(本小题8分)

某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;

(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?

(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.(本小题8分)

如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53.

求:23.(本小题8分)

我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.

(1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?24.(本小题8分)小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x轴方向,1 m为单位长度,建立了如图所示的平面直角坐标系,铅球从y轴上的A点出手,运动路径可看作抛物线,在B点处达到最高位置,落在x轴上的点C处.小明某次试投时的数据如图所示.(1)在图中画出铅球运动路径的示意图;(2)根据图中信息,求出铅球路径所在抛物线的表达式;(3)若铅球投掷距离(铅球落地点C与出手点A的水平距离OC的长度)不小于10 m,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.25.(本小题8分)蚌埠,古乃采珠之地,素有“珍珠城”之美誉,已知一批珍珠每颗的进价为30元,售价定为50元/颗时,每天可销售60颗,为扩大市场占有率,商家决定采取适当的降价措施,经调查发现,售价每降低2元,每天销量可增加20颗(销售单价不低于进价).(1)写出商家每天的利润W(元)与降价x(元)之间的函数关系;(2)当降价多少元时,商家每天的利润最大,最大利润是多少?(3)若商家每天的利润至少要达到1440元,则定价应在什么范围内?

答案和解析1.【答案】A

【解析】解:过点H作HE⊥BC,垂足为E.

∵BD是正方形的对角线

∴∠DBC=45°

∵QH⊥BD

∴△BHQ是等腰直角三角形

∴HE=x+22

∴△BPH的面积S=12BP⋅HE=12x⋅x+22=14x2+12x

∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;

因此,选项中只有A选项符合条件.

故选:2.【答案】A

【解析】解:过点H作HE⊥BC,垂足为E.

∵BD是正方形的对角线

∴∠DBC=45°

∵QH⊥BD

∴△BHQ是等腰直角三角形

∴HE=x+22

∴△BPH的面积S=12BP⋅HE=12x⋅x+22=14x2+12x

∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;

因此,选项中只有A选项符合条件.

故选:3.【答案】A

【解析】【分析】

本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.

【解答】

解:设获得的利润为y元,由题意得:

y=(x−100)(200−x)

=−x2+300x−20000

=−(x−150)2+2500

∵a=−1<0,∵x>100,

∴当x=150时,y取得最大值4.【答案】D

【解析】解:由题意,设每件商品进价为a元,

∴80×0.8−a=24.

∴a=40,即可判断A正确,不符合题意.

此时降价后每件商品售价为:80×0.8−x=64−x,即可判断B正确,不符合题意.

降价后每周可卖(220+20x)件,可以判断C正确,不符合题意.

由上,每星期的利润为(80×0.8−x−40)(220+20x)=(24−x)(220+20x),即可判断D错误,符合题意.

故选:D.

依据题意,设每件商品进价为a元,由80×0.8−a=24,即可判断A;降价后每件商品售价为:80×0.8−x,即可判断B;降价后每周可卖(220+20x)件,可以判断C;由上,每星期的利润为(80×0.8−x−40)(220+20x),即可判断D.

本题主要考查二次函数的应用,解题的关键是理解题意找到其蕴含的相等关系,并据此列出函数解析式,也要求熟练掌握二次函数的性质.5.【答案】B

【解析】【分析】

本题考查了二次函数的性质在实际生活中的应用,首先要吃透题意,确定已知点坐标,求出函数表达式,通常自变量在对称轴时,函数取得最值.

把点坐标:(0,43)、(20,55)、(30,31),代入函数s=at2+bt+c,求出函数表达式,由a=−110<0,故函数有最大值,即:当t=−b2a=13时,s有最大值.

【解答】

解:由题意得:函数过点(0,43)、(20,55)、(30,31),

把以上三点坐标代入s=at2+bt+c得:

43=c55=202a+20b+c31=302a+30b+c6.【答案】C

【解析】解:令ℎ=0,得:6t−5t2=0,

解得:t=0或t=1.2,

∴那么球弹起后又回到地面所花的时间是1.2秒;

故选:C.

7.【答案】C

【解析】解:设池底所在抛物线的解析式为y=ax2+bx+c,

把抛物线上点A(−15,0),B(15,0),P(0,−5),代入抛物线解析式中得:

0=(−15)2a+(−15)b+c0=152a+15b+c−5=c,

解得:a=145b=0c=−5,

解析式为y=145x2−5.

选项A中,AB=15−(−15)=30,故选项A错误,该选项不符合题意;

选项B中,池底所在抛物线的解析式为y=145x2−5,故选项B错误,该选项不符合题意;

选项C中,池塘水深最深处为点P(0,−5),水面为CD,yD=145×122−5=−1.8,

−1.8−(−5)=3.2(m),

所以水深最深处为点P到水面CD的距离为3.2m,故选项C正确,该选项符合题意;

选项D8.【答案】A

【解析】解:由小球高度ℎ与运动时间t的关系式ℎ=30t−5t2.

令ℎ=0,−5t2+30t=0

解得:t1=0(不合题意,舍去),t2=6

∴t=6,小球从抛出至回落到地面所需要的时间是6秒.

故选:A.

由小球高度ℎ9.【答案】B

【解析】解:设BE=x m,则DG=2BE=2x m,绿地AEFG的面积为ym2,根据题意得:

y=AE⋅AG

=(8−x)(8+2x)

=−2x2+8x+64

=−2(x−2)2+72.

∵二次项系数为−2,

∴当x=2时,y有最大值72.

即当BE=2 m时,绿地AEFG面积最大.

故选:B.

依据题意,设BE=x m,则DG=2BE=2x m,绿地AEFG的面积为10.【答案】C

【解析】解:如图所示,建立平面直角坐标系,

由题意得A点坐标(−10,0),B点坐标为(10,0),C点坐标为(0,6),N点横坐标为5,

设抛物线解析式为y=ax2+c,

∴100a+c=0c=6,

∴a=−350c=6,

∴抛物线解析式为y=−350x2+6,

∴当x=5时,y=−350×5211.【答案】D

【解析】解:A、当ℎ=15时,15=20t−5t2,

解得:t1=1,t2=3,

故当1s或3s小球的飞行高度能达到15m,故此选项错误,不符合题意;

B、ℎ=20t−5t2=−5(t−2)2+20,

故t=2时,小球的飞行高度最大为:20m,故此选项错误,不符合题意;

C、∵ℎ=0时,0=20t−5t2,

解得:t1=0,t2=4,

∴小球从飞出到落地要用时4s,故此选项错误,不符合题意;

D、由题意,当12.【答案】C

【解析】解:(1)∵直角三角形的两条直角边的和等于20cm,且它的一条直角边为x cm,

∴另一条直角边为(20−x)cm,

∴直角三角形的面积y=12x(20−x),

∴y与x之间的函数关系式y=12x(20−x)(0<x<20).13.【答案】4

【解析】【分析】

此题考查二次函数的运用,根据所建坐标系确定水平距离的求法是此题关键.根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.

【解答】

解:当y=3.05时,3.05=−0.2x2+x+2.25,

x2−5x+4=0,

(x−1)(x−4)=0,

解得:x1=1,x2=4,

14.【答案】S=−2200

【解析】【分析】本题考查二次函数的应用,(1)表示出

BC

,由矩形面积公式可得函数关系式;(2)把面积S配成顶点式,由二次函数性质可得答案.【详解】解:(1)由题意得:

BC=40−2x

,∴

S=x40−2x=−2∵

40−2x>0

,解得

x<20

,∴活动区面积S与

x

之间的关系式为

S=−2x2解:(2)由(1)得:活动区面积S与

x

之间的关系式为

S=−2x2∵

S=−2x2∴当

x=10

时,S取最大值200,∴菜园

ABCD

最大面积是200平方米;15.【答案】13.5

【解析】解:当y取得最大值时,飞机停下来,

y=60t−32t2=−32(t−20)2+600,

即当t=20时,飞机滑行600才停下来,

当t=17时,y=586.5,

600−586.5=13.5,

故答案为13.5.

当y取得最大值时,飞机停下来,y=60t−3216.【答案】y=−1【解析】解:由题意知,抛物线的顶点坐标为(20,16),过(0,0),

设抛物线对应的表达式为y=a(x−20)2+16,

将(0,0)代入y=a(x−20)2+16得,0=a(0−20)2+16,

解得,a=−125,

∴y=−125(x−20)2+16,

故答案为:y=−12517.【答案】解:由题意得,抛物线的顶点坐标为(4,4),球出手时的坐标为(0,20设抛物线解析式为:y=a(x−4)将点(0,209)解得:a=−则抛物线的解析式为:y令x=7,则y=−∵3m=3m∴此球能准确投中.

【解析】根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式,令x=7,求出y的值,与3m比较即可作出判断.本题考查了二次函数的应用,解答本题的关键是利用待定系数法求出抛物线解析式,注意建立数学模型,培养自己利用数学知识解决实际问题的能力.18.【答案】解:根据题意得,y=x(20−2x)=−2x∴当x=5时,y有最大值,y的最大值为50,∴当AB长为5m时,花圃面积最大,最大面积为50m

【解析】根据题意得,y=x(20−2x)=−2x本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【答案】解:设每箱售价为x元,销售总利润为w元,∵售价为50元时,可销售90箱;售价每提高5元,销售量将减少15箱,∴销售量=90−15×∴=−=−3(x−60∵−3∴当x=60时,w有最大值,最大值为1200,答:当每箱售价为60元时,销售利润最大,最大为1200元.

【解析】先根据题意求出销售量,然后写出w与x之间的函数关系式,配成顶点式,即可求出利润的最大值.本题考查的是二次函数的应用,解题关键是掌握二次函数顶点式的配法.20.【答案】解:(1)根据题意得,y=−12x+50;

(2)根据题意得,(40+x)(−12x+50)=2250,

解得:x1=50,x2=10,

∵每件利润不能超过60元,

∴x=10,

答:当x为10时,超市每天销售这种玩具可获利润2250元;

(3)根据题意得,w=(40+x)(−12x+50)=−12x2+30x+2000=−12(x−30)2+2450,

∵a=−12<0,

∴【解析】本题考查了一元二次方程的应用、二次函数的应用,弄清题目中包含的数量关系是解题关键.

(1)根据题意列函数关系式即可;

(2)根据题意列方程即可得到结论;

(3)根据题意得到w=−12(x−30)2+2450,根据二次函数的性质得到当21.【答案】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:

55k+b=7060k+b=60,解得:k=−2b=180.

∴y与x之间的函数表达式为y=−2x+180.

(2)由题意得:(x−50)(−2x+180)=600,

整理得:x2−140x+4800=0,

解得x1=60,x2=80.

答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.

(3)设当天的销售利润为w元,则:

w=(x−50)(−2x+180)

=−2(x−70)2+800,

∵−2<0,

∴当x=70时,【解析】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.

(1)利用待定系数法来求一次函数的解析式即可;

(2)依题意可列出关于销售单价x的方程,然后解一元二次方程即可;

(3)利用每千克的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.22.【答案】解:(1)y=−112x2+23x+53

=−112(x−4)2+3

∵−112<0

∴y的最大值为3

∴铅球在行进中的最大高度为3m.

(2)令【解析】(1)将所给二次函数写成顶点式,则顶点纵坐标即为所求的最大高度;

(2)令y=0得:−112x23.【答案】解:(1)设一次函数关系式为y=kx+b(k≠0),

由图象可得,当x=30时,y=140;x=50时,y=100,

∴140=30k+b100=50k+b,解得k=−2b=200.

∴y与x之间的关系式为y=−2x+200(30≤x≤60).

(2)设该公司日获利为W元,由题意得W=(x−30)(−2x+200)−500=−2(x−65)2+1950,

∵a=−2<0,

∴抛物线开口向下;

∵对称轴x=65,

∴当x<65时,W随着x的增大而增大;

∵30≤x≤60,

∴x=60时,W有最大值;W最大值=−2×(60−65【解析】(1)通过题意,确定出二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论