




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Context-AwareHierarchicalFusion
forDrugRelationalLearning
YijingxiuLu,YinhuaPiao,SangseonLee,SunKimSeoulNationalUniversity
Outline
•Background
•Motivation
•Method
•Experiments
•Summary
Background
DrugRelationalLearning
oCo-administrationofdrugsisacommonpracticeintreatingdiseases.
oChemicalandphysicalreactionsbetweendrugscanaltertheintendedfunctionalityofdrugs.
oComplexbiochemicalmechanismswithinthehumanbodycouldfurtherleadtoadversedrugreactions.
oDiscoveringallpossibledrugcombinationsusing
traditionallaboratory-basedmethodsischallenging.
Synergeticeffect
ondestroyinga
specifictypeof
lungcancercells
Unwanted
chemicalUnexpected
interactionspolypharmacy
sideeffects
Background
DrugRelationalLearning
1.Drug-druginteractionsarecontext-dependent
oE.g.TheconcomitantintakeofTylenolandalcoholcanleadtoliver
damageduetocompetitionforthesamemetabolicenzyme.Tylenol(acetaminophen)Alcohol(Ethanol)
CYP2E1
compete
CYP2E1
NAPQI(toxic)
!
Glutathione
cysteineandmercapturic
acidconjugates
(nontoxic)
Acetaldehyde
insufficient
Unexpectedpolypharmacy
sideeffects
Background
DrugRelationalLearning
2.Drugrelationshipscanchangewithcontext
oE.g.Cabazitaxalandzoledronicacidexhibitsynergyinlungcancercelllinesbutactantagonisticallyinbreastcancertreatment.
Complexmechanismsaffectedbycontextchanges:
oTumormicroenvironments.
oAntagonisminbreastcancer.
oDrugtransportandmetabolism.
Synergeticeffect
ondestroyinga
specifictypeof
9lungcancercells
BackgroundCurrentWorks
Currentworksondrugrelationallearningcanbecategorizedintonetwork-basedandstructure-based.
oNetwork-basedmethods:
oIntegratemulti-omicsdatatoconstructheterogeneousnetworksforinferringDDI.
oStructure-basedmethods:
oDirectlylearnchemicalpropertiesandbiologicalactivitiesfrommolecularstructure.
Network-basedMethods
》
Structure-basedMethods
BackgroundCurrentWorks
Currentworksondrugrelationallearningcanbecategorizedintonetwork-basedandstructure-based.
oNetwork-basedmethods:
oIntegratemulti-omicsdatatoconstructheterogeneousnetworksforinferringDDI.
oStructure-basedmethods:
oDirectlylearnchemicalpropertiesandbiologicalactivitiesfrommolecularstructure.
Howtocombinetheadvantagesofbothandbuildamodelsuitablefornewdrugs?
Network-basedMethodsStructure-basedMethods
Method
HierarchicalInformationFusion
Context-awaredrug-drugrelationallearning:
oInformationfusionbetweendrugs.
oInformationfusionbetweendrug-context.
oDrugfeatureencoderlearnscontext-awarerelationknowledge.
oInferunknownrelationship.
drugi
contextc
drugj
Rdi→c
HiⅡRdj→di
⃞--------->
Lsup
HjⅡRdi→dj
Rdj→c
Hi
Hc
Hj
Method
ProblemDefinition
Context
oConsiderasetofannotateddrug-drug-contexttriplet
drugi
tuples(di,dj,c,y),wheredi,dj∈D,c∈C,andyisthetargetvariablebelongingtoY.
drugj
oD={d1,d2,...,dn}representacollectionofndrugs,andC={c1,c2,...,cm}denoteasetofmcontexts.
drugk
oHere,yisascalarvalue,rangingfromnegativetopositiveinfinityinregressiontasks,andtakingbinaryvalues(0or1)inclassificationtasks.
relation(e.g.whethertwodrugsi,jexhibitsynergyinaspecificcelllinec)
drugi
drugj
contextc
Method
Context-AwareHierarchicalFusion
1.DrugEncoderandContextEncoder
Weemploy:
oGraphIsomorphismNetwork(GIN)asgraphencoder.
ℎ=MLP(ℎ−1+ℎ−1)
u∈N(v)
oMulti-LayerPerceptron(MLP)ascontextencoder.
ℎc=MLP(xc)
contextc
Hc
Method
2.Drug-DrugCrossFusion
Context-AwareHierarchicalFusion
oweemployanatom-wiseinteractionmaptocalculatethe
Hi,Hj
directionalrelationshipRdi→djbetweenapairofdrugsiandj.
Iij=sim
Rdi→dj=I·Hj
Hi∥Rdi→dj
oweupdatetherepresentationofdrugias:
H=concat
3.Drug-ContextCrossFusion
oSimilarly,wecomputetherelationshipsbetweendrugsandcontext:
Iic=simH,HcRdi→c=I·H
Rdi→c
Method
Context-AwareHierarchicalFusion
4.TripletRelationPredictor
oWefeedthefinalhiddenrepresentationofthedrug-drug-contexttripletintoMLPforrelationprediction:
hdi,dj,c=concat(HcⅡRdi→cⅡRdj→c)di,dj,c=MLP(hdi,dj,c)
drugi
c
context
drugj
Rdi→c
HiⅡRdj→di
__--------->
Rdj→c
HjⅡRdi→dj
Hi
Hc
Hj
Lsup
Outline
•Background
•Motivation
•Method
•Experiments
•Summary
Results
BenchmarkDatasets
weconsiderthethreemostpopulartasksindiseasetreatment:
oDrug-DrugSynergytask:
opredictswhetherapairofdrugsdi,djexhibitsynergyinaspecificcelllinec.
oDrug-DrugPolypharmacySideEffecttask:
opredictswhetherapairofdrugsdi,djleadstoaspecificadverseeventc.
oDrug-DrugInteractiontask:
opredictswhetherapairofdrugsdi,djleadstoaparticularreactionc.
Results
Performance
oOurmodelsconsistentlyoutperformthebaselinesacrossalltasks,underscoringtheeffectivenessofourarchitectureinlearningcomplexdrugrelationsacrossdiversetasks.
Results
AblationStudy
Oneofthemostnoteworthydistinctionsbetweenourmodelandotherbaselinesisthatourmodelexplicitlylearnsdrugrelationshierarchicallythroughthedrug-drug-contexttriplet.
Thereisasignificantdropwhenrelationsarenotexplicitlymodeled.
Withouthierarchy,themodel’sperformancedropsbyaround3.3%inAUROC.
suggestingthatthehierarchicalarchitectureeffectivelyfiltersoutfeaturesthatareirrelevanttomodelprediction.
Removingeithersideofthefusionresultsinadropinperformance.
Results
Performanceundercold-drugsetting
Toassessthegeneralizationabilityofourmodelinpredictingrelationshipsbetweenunknowndrugpairs,weadoptedacold-drugsettingbypartitioningasmallsubsetofdrugsfromtheoriginaldataset.
oOurmodeloutperformedothermodelsbyasignificantmarginonDrugBankDDI,andachievecomparableperformancetothebestbaselineonDrugComb.
oInsuchacontext-richenvironment,theabilityofmodelstolearncontextualinformationismorecriticalforperformance.
Summary
MainchallengesinDrugRelationalL
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 育婴知识培训
- 小学校本课程教学
- 钻石交易合同
- 【名校密卷】人教版数学四年级下册期中测试卷(三)及答案
- 江西省上饶市横峰县2024-2025学年六年级下学期小升初真题数学试卷含解析
- 广西自然资源职业技术学院《康养保健与按摩》2023-2024学年第二学期期末试卷
- 闽江学院《医疗器械研发管理与产品认证》2023-2024学年第二学期期末试卷
- 哈尔滨城市职业学院《动物生物学》2023-2024学年第二学期期末试卷
- 人教PEP版英语五年级下册教学课件Unit 6 Part B 第三课时
- 2025年张家界市小升初全真模拟数学检测卷含解析
- 输水管线工程施工方案
- 建设项目日照分析报告
- 复工复产六个一方案模板
- DB11T 775-2010 透水混凝土路面技术规程
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 2024-2030年中国人绒毛膜促性腺激素(HCG)行业市场发展趋势与前景展望战略分析报告
- 数据治理平台建设方案
- 湖北省荆、荆、襄、宜四地七校考试联盟2025届高三下学期联考历史试题含解析
- 续家谱跋的范文
- 人教小学数学六年级下册整 理和复习《整数》教学课件
- 中国信息消费发展态势报告(2022年)
评论
0/150
提交评论