![数学的由来三十字以内_第1页](http://file4.renrendoc.com/view12/M0B/14/24/wKhkGWeIhtyAS7flAAJa2zP40Ag014.jpg)
![数学的由来三十字以内_第2页](http://file4.renrendoc.com/view12/M0B/14/24/wKhkGWeIhtyAS7flAAJa2zP40Ag0142.jpg)
![数学的由来三十字以内_第3页](http://file4.renrendoc.com/view12/M0B/14/24/wKhkGWeIhtyAS7flAAJa2zP40Ag0143.jpg)
![数学的由来三十字以内_第4页](http://file4.renrendoc.com/view12/M0B/14/24/wKhkGWeIhtyAS7flAAJa2zP40Ag0144.jpg)
![数学的由来三十字以内_第5页](http://file4.renrendoc.com/view12/M0B/14/24/wKhkGWeIhtyAS7flAAJa2zP40Ag0145.jpg)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学的由来三十字以内数学的由来三十字以内数学最初是从结绳记事开始的。大约在三百万年前,人们的活动是集体性质的,打猎捕食都是在一起,所以“产品”也就必须平均分配,这样人们渐渐产生了数量的概念,然后用绳子记数,然后产生了。数学的起源埃及是数学的古国,被人们认为是数学产生的最早国家之一。因此,在研究数学历史的时候,必须提及埃及的数学。埃及数学产生的社会背景埃及位于尼罗河岸,在古代分为两个王国,把夹在两个高原中间的狭长谷地叫做上埃及,把处于尼罗河三角洲地带叫做下埃及。这两个王国经过长时期的斗争,在公元前3200年实现了统一,并建都于下游的孟斐斯(Memphis)。尼罗河经常泛滥,淹没良田,而统治者需要征收,重新丈量土地。实际上,埃及的几何学就起源于此。希腊的历史学家希罗多德(Herodotus约公元前484―424)在《历史》一书中明确指出:“塞索特拉斯Sesostris)①在全体埃及及居民中间把埃及的土地作了一次划分。他把同样大小的正方形的土地分配给所有的人,而要土地持有者每年向他缴纳租金,作为他的主要税收。如果河水泛滥,国王便派人调量损失地段的面积。这样,他的租金就要按照减少后的土地的面积来征收了。我想,正是由于有了这样的做法,埃及才第一次有了几何学。”数学的起源一、“什么是数学?”数学本身是一个历史的概念,数学的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。我们在这里就从历史的角度来谈谈“什么是数学”这个问题。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”二、数与形的概念的产生人类在蒙昧时代就已具有识别事物多寡的能力。原始人在采集、狩猎等生产活动中首先注意到一只羊与许多羊、一头狼与整群狼在数量上的差异。通过一只羊与许多羊、一头狼与整群狼的比较,就逐渐看到了一只羊、一头狼、一条鱼、一棵树等等之间存在着某种共通的东西(即它们的单位性)。当对数的认识变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。古代的记数方法:1、手指计数:利用两只手的十个手指。亚里士多德指出:十进制的广泛采用,只不过是我们绝大多数人生来具有10个手指这一事实的结果。2、石子记数:在地上摆小石子,但记数的石子堆很难长久保存。3、结绳记数:在一根绳子上打结来表示事物的多少。比如今天猎到五头羊,就以在绳子上打五个结来表示;约定三天后再见面,就在绳子上打三个结,过一天解一个结;等等。秘鲁的印加族人(印第安人中的一部分)古时(公元前1500年前)每收进一捆庄稼,就在绳上打个结,用来记录收获的多少。中国古代文献《周易系辞下》有“上古结绳而治”之说。“结绳而治”即结绳记数或结绳记事。结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来。宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火。”这是用结草来调发军马,传达要调的人数。其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法。中央民族大学就收藏着一副高山族的结绳,由两条绳子组成:每条上有两个结,再把两条绳结在一起。4。
刻痕记数:1937年在维斯托尼斯(摩拉维亚)发现一根40万年前的幼狼前肢骨,7英寸长,上面有55道很深的刻痕。这是已发现的用刻痕方法计数的最早资料。直到今天,在欧、亚、非大陆的某些地方,仍然有一些牧人用在棒上刻痕的方法来计算他们的牲畜。直到距今大约五千年前,终于出现了书写记数以及相应的记数系统。我们介绍几种古老文明的早期记数系统。(按时代顺序)1。
古埃及的象形数字(公元前3400年左右)2。
巴比伦楔形文字(公元前2400年左右)3。
中国甲骨文数字(公元前1600年左右)4。
希腊阿提卡数字(公元前500年左右)5。
中国筹算数码(公元前500年左右)6。
印度婆罗门数字(公元前300年左右)7。
玛雅数字(?)而我们现代广泛使用的是阿拉伯数字。其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。与数的概念形成一样,人类最初的几何知识也是他们从对形的直觉中萌发出来的,例如,不同种族的人都注意到了圆月和挺拔的松树在形象上的区别。几何学便是建立在对这类从自然界提取出来的“形”的总结的基础之上。例如,一个平面只不过是一片平地的表面,而一条直线则是拉紧了的一段绳子,来自希腊文的英文Hypotenuse(斜边、弦)原先的意思就是“拉紧”。同样,三角形、圆、正方形、长方形等一系列几何形式的概念也来自于人们的观察和实践。在不同的地区,几何学的这种实践来源方向不尽相同。1。
古埃及几何学:正如古罗马历史学家希罗多德所指出的',埃及的几何学是“尼罗河的馈赠”。一年一度的尼罗河洪水冲毁了某个人的土地,那么他就必须向法老报告所受的损失。法老会派专人来测量所失去的土地,再按相应的比例减税。这样一来,几何学就产生并发展起来了。这类专门负责测量事物的人有专门的名称,叫做“司绳”。2。
巴比伦人的几何学:也是源于实际的测量,它的重要特征是其算术性质,至少在公元前1600年,他们就已熟悉长方形、直角三角形和等腰三角形和某些梯形的面积计算。3。
古印度几何学:起源与宗教实践密切相关,公元前8世纪至5世纪形成的所谓“绳法经”,便是关于祭坛与寺庙建造中的几何问题及其求解法则的记载。4。
古代中国几何学:起源更多地与天文观测相联系。中国最早的数学经典《周髀算经》(至晚在公元前2世纪成书)事实上是一部讨论西周初年天文测量中所用数学方法的著作。数学的由来数学,我国古代叫算术,后来叫算学,又叫数学。近几十年来才确定统一叫做数学。古代“算”字有三种写法:筹、笄、算。从字形的结构,可以看到事物演变的一些痕迹。许慎《说文解字》对这几个字作如下解释:“笄”,“长六寸,计历数者,从竹从弄言常弄乃不误也”。“算,数也,从竹上具,读若”。“示示”,或“算”原来都一种竹制的工具,是几寸长的竹签,也叫筹码。用来记数、计算或卜卦。摆弄这些“算”,有一套技术基学问,自然就叫做“算术”或“算学”。我国盛产竹子,是世界上最善于利用竹子的国家。用竹子做计算工具,使我国古代数学带有许多和西方不同的特色。“示示”由两个“示”字合成。《说文》解释“示”字说:“示,神事也。”“二”是古文的上字,三竖(后来写成一竖两点)是日、月、星。古人以为天上有神灵,神的表示是从上面下来的。矫同时也用来占筮,因此“示示”字带有迷信色彩,是不奇怪的。“算”字是什么时候开始使用的?李约瑟认为在甲骨文或金文中从未发现过这个算字,因此它出现的年代不可能早于公元前3世纪。无论如何,“算术”这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘教版数学九年级上册《小结练习》听评课记录4
- 部审人教版九年级数学下册听评课记录28.2.2 第2课时《利用仰俯角解直角三角形》
- 人教版历史八年级上册第16课《毛泽东开辟井冈山道路》听课评课记录
- 部编版八年级历史上册《第10课中华民国的创建》表格式听课评课记录
- 人教版地理七年级上册第三章第四节《世界的气候第2课时》听课评课记录
- 北师大版历史八年级下册第8课《艰苦创业年代的英雄模范》听课评课记录
- 苏教版四年级下册数学口算练习
- 华东师大版数学八年级上册《11.1.1 平方根》听评课记录
- 大型商场商铺租赁合同范本
- 二零二五年度舞台搭建安全规范与责任落实协议
- 江苏省2023年对口单招英语试卷及答案
- 易制毒化学品安全管理制度汇编
- GB/T 35506-2017三氟乙酸乙酯(ETFA)
- GB/T 25784-20102,4,6-三硝基苯酚(苦味酸)
- 特种设备安全监察指令书填写规范(特种设备安全法)参考范本
- 硬笔书法全册教案共20课时
- 《长方形的面积》-完整版课件
- PDCA降低I类切口感染发生率
- 工业企业现场监测工况核查表
- 沉淀池及排水沟清理记录表
- 急诊急救信息化课件
评论
0/150
提交评论