2024构建企业级 AI 平台的架构策略和实践_第1页
2024构建企业级 AI 平台的架构策略和实践_第2页
2024构建企业级 AI 平台的架构策略和实践_第3页
2024构建企业级 AI 平台的架构策略和实践_第4页
2024构建企业级 AI 平台的架构策略和实践_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Strategies

ofMachineLearningPlatformBuilding&Practicesin

eBayAgendaAIPlatformvision,designprinciplesandcore

capabilities1AI/MLuse

caseanalysis23Unified

datastrategiesAIUse

CasesOnlinedataservices–OTF

FEStreamingevents–NRTFEOfflinebatch/ETLdatasets–Batch

FEStructured

DataSemi/Unstructured

Data(image/video/text/3D/…)Data

Source- Contentgeneration/acquisitionNRT

pipelineUnifiedonline/offlinefeature

storeUnifiedonline/offlinecontent

storeStorageDataPiT

ParityOnline/offlinePiTdata

strategiesPiTdataparityisnot

requiredFeedback

LoopShort:ContinuousonlinetrainingLong:OfflinePiTfeature

simulationVendor/manual/auto

labellingCommonDriver

set &trainingsetgeneration&management,catalog,datalineage,

etc.CPU/GPU- CPUtrainingandinferencing

typically- GPUtrainingandinferencing

typicallyChallengesofBuildingEnterpriseML

PlatformTendstoinvestmoreonsolutionsinsteadof

platformLackofclearboundarybetween

solutionsand

platformLackofunifieddatastrategiesandself-servicesupportforMLPlatform

buildingTraditionally

focusmoreontraining,lackofenoughplatformsupportondata/featureand

inferencingLackofE2Eseamlessintegrationstrategies

crossfeature,trainingand

inferencingMLDevelopment

LifecycleAgendaAIPlatform

vision,designprinciplesandcorecapabilities23Unified

datastrategies1AI/MLuse

caseanalysisOur

VisionToempowereBayAIpractitionerstobuild,trainanddeploymachinelearningmodelswithfully-managed,efficientandself-serviceplatformat

scale.MLPlatformCoreCapability

MapMLPlatformArchitectural

PrinciplesEnableself-servicebasedoncentralizedconfigurationandmetadata-drivendesign,

withlifecyclemanagementandgovernancein

placeEnableunifiedmetadataanddefinitionscrossonlineandoffline,withenoughflexibility andextensibilitytosupportdomainlevel

customizationsProvideagroupofmanagementAPIs&servicesforMLPmanagedlifecycle,andenabletheE2Eseamlessintegrationbasedonthe

APIsProvideunifiedcatalogs(includingdata,storedvariables,features,models,solutions,etc.)topromotediscovery,reuseandbetter

governanceProvideE2EdatalineagesfortheAIPlatformdomain

entitiesApplyunifiedmonitoringcrossthewholeML

platformMLPlatformOnlineIntegration

ArchitectureEntityModelinginML

PlatformDependencyDAG&Execution

PlanUnifiedCPU/GPUInferencing

PlatformModelandFeature

MonitoringAgenda3Unified

datastrategies21AI/MLuse

caseanalysisAIPlatformvision,designprinciplesandcore

capabilitiesWhyDataStrategiesaresoImportantfor

AI/MLImagesource:Cognilytica,from

https://www.ayadata.ai/blog-posts/manual-vs-automated-data-labelingBatch

FeatureFeature

DSLNRTRoll-up

AbstractionNRTFeature

EngineeringNRT

FeatureSchemaEvent

processingDerived

ComputationOn-the-fly

FeatureComparisonsofDifferentFeatures

TypesBatch

Feature NRT

FeatureOn-the-fly

FeatureOnline/offlinePiT

StrategyPiTSimulation/FeatureSnapshottingPiTSimulation/FeatureSnapshottingFeatureSnapshotting

OnlyReusabilityEasyto

reuseEasyto

reuseSolutionbysolution

supportTime-to-MarketFastFastexceptnewenrichedevent

acquisitionSlowMLP

ManagedSelf-servicebyEndUsers(DS)DelayofData

FreshnessData

SourceYesYesYesYesNoNo1Day+P99<5

secReal-timeETL/Batchdata/Snapshotted

DatasetEnriched

eventsRequestcontext

/Onlinedata

servicesEmbracingNRT

StrategyIntegratedData

StrategiesFeature

PlatformUnifiedFeature

StoreFeatureLifecyle

Mngt.FeaturePiT

SimulationTraining

PlatformTrainingSetGeneratio

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论