下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南开中学2022-2021学年度高一其次次阶段检测数学试卷选择题:(每题4分,共40分)1.已知,则角所在象限是().A.第一象限 B.其次象限 C.第三象限 D.第四象限2.设,,,则().A. B. C. D.3.函数零点所在区间为().A. B. C. D.4.已知,若,则=().A.4 B.14 C.16 D.185.若函数为奇函数,则().A. B. C. D.16.化简的结果是().A. B. C. D.7.下列函数中,图象关于直线对称的函数是().A. B. C. D.8.函数的图象为C,给出下列结论:图象C关于直线对称;图象C关于点对称;函数在区间内是增函数;其中正确的结论有()个.A.B.C.D.9.,函数,则的取值范围是().A. B. C.D.10.设函数,当时,取得最值,若关于的方程有解,则可以是(). A.B. C.D.填空题(每题4分,共20分)11.已知,则=.12.某扇形的面积为1,它的周长为4,那么该扇形的圆心角为____________.13.已知,则_________________.14.若,则的最大值是__________.15.若关于的不等式的解集为,且,则的取值范围是____________.三、解答题(每题10分)16.已知在中,(=1\*ROMANI).求的值;(=2\*ROMANII).求的值.17.已知函数(=1\*ROMANI).求解析式及其对称中心;(=2\*ROMANII).若,求的取值范围. 18.已知集合,集合(=1\*ROMANI).当时,求;(=2\*ROMANII).若,求的取值范围.19.已知函数,,记(=1\*ROMANI)求函数的定义域及其零点;(=2\*ROMANII)若关于的方程在区间内有解,求实数的取值范围.附加题(本题20分)定义在上的函数,假如满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界。已知函数,.
(I)当时,求函数在上的值域,并推断函数在上是否为有界函数,请说明理由;
(II)当时,推断函数的奇偶性并证明,并推断是否有上界,并说明理由;(=3\*ROMANIII)若函数在上是以2为上界的有界函数,求实数的取值范围;(=4\*ROMANIV)若,函数在上的上界是,求的取值范围.高一班级其次次月考数学试卷答题纸班级____________姓名_______________成果__________二、填空题11._________________ 12.__________________13._________________ 14.__________________15._________________解答题:16.已知在中,(=1\*ROMANI).求的值;(=2\*ROMANII).求的值17.已知函数(=1\*ROMANI).求解析式及其对称中心;(=2\*ROMANII).若,求的取值范围.18.已知集合,集合(=1\*ROMANI).当时,求;(=2\*ROMANII).若,求的取值范围.19.已知函数,,记(=1\*ROMANI)求函数的定义域及其零点;(=2\*ROMANII)若关于的方程在区间内有解,求实数的取值范围.附加题BACBA ADCDD11、 12、2 13、 14、 15、解答题:16、(1),,(2)、17、(1)、设(2)、若则,18、(1)、当时,(2)、19、(1)、定义域(2)、依据题意等价为在有解设=1\*GB3①=2\*GB3②,附加题(1)当时,由于在上递减,所以,即在的值域为故不存在常数,使成立所以函数在上不是有界函数(2)、依据题意,明显定义域为R,为奇函数,,,存在为上界(3)由题意知,在上恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学《环境生物监测与修复技术》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《水工程经济》2023-2024学年第一学期期末试卷
- 广东培正学院《文化项目管理》2023-2024学年第一学期期末试卷
- 七年级上册《3.1.1 代数式》课件与作业
- 广东南方职业学院《数学物理方法Ⅱ》2023-2024学年第一学期期末试卷
- 广东理工职业学院《中国艺术设计史》2023-2024学年第一学期期末试卷
- 【Ks5u发布】山东省烟台市2021届高三上学期期末统考数学(理)试题扫描版含答案
- 2021高考生物限时规范特训:第25讲-现代生物进化理论
- 【9语一模】2024年合肥市第四十二中学中考一模语文试题
- 陕西省渭南市尚德中学2024-2025学年高一上学期第一次阶段性物理试卷(含答案)
- 中国大数据产业发展指数报告(2024版)
- 带封面的新员工入职登记表
- 医院教学工作汇报
- 小学生经典阅读英语短文100篇
- 2024-2030年中国计算机视觉行业市场发展趋势与前景展望战略分析报告
- 2025高考语文步步高大一轮复习讲义教材文言文点线面答案精析
- 《工程勘察设计收费标准》(2002年修订本)-工程设计收费标准2002修订版
- 新省中考统考语文模拟卷(一)(山东卷)2024年新中考地区语文适应性考试模拟卷(新中考地区适用)(原卷版)
- DL∕T 5344-2018 电力光纤通信工程验收规范
- DL∕T 2528-2022 电力储能基本术语
- 2024年安徽省高考政治试卷(真题+答案)
评论
0/150
提交评论