版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
C280,ComputerVision
Prof.TrevorDarrell
trevor@
Lecture12:IntroductiontoRecognition;
Boosting,HOG,andBag-of-WordModels
Lastfewlectures...
•Feature-basedAlignment
-Stitchingimagestogether
-Homographies,RANSAC,Warping,Blending
-Globalalignmentofplanarmodels
•DenseMotionModels
-Localmotion/featuredisplacement
-Parametricopticflow
•Stereo/'Multi-view':Estimatingdepthwithknowninter
camerapose
•/Structure-from-motion,:Estimationofposeand3Dstructure
-Factorizationapproaches
—Globalalignmentwith3Dpointmodels
RecognitionChallenges/
Overview
ObjectCategorization
75
一
o一
-
n
l
u
o
口
C
6
O
O
O•HowtorecognizeANYcow
H
l
o
CDJ
q
o
-
B
n
s
一
4
K.Grauman,B.Leibe
Challenges:robustness
w
M
o
lIlluminationObjectposeClutter
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-OcclusionsIntra-class
BViewpoint
n
sappearance
>
Challenges:robustness
w
oK
nl
.J
u
o
口
6C
0
0
O•DetectioninCrowdedScenes
)H>Learnobjectvariability
1
0-Changesinappearance,scale,andarticulation
.9q>»Compensateforclutter,overlap,andocclusion
0
-
B
n
s
>K.Grauman,B.Leibe
Challenges:contextandhumanexperience
w
K
o
l
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-
B
n
s
>
K.Grauman,B.Leibe
Challenges:contextandhumanexperience
w
K
o
nl
l
U
0
4
C
6
0
0
0H)Contextcues
ol
g
q
o
-
B
n
s
>
Imagecredit:D.Hoeim
Challenges:learningwithminimalsupervision
w
K
o
l
n
l
u
o
口
C
6
O
O
O
H
l
o
g
q
o
-
B
n
s
>
K.Grauman,B.Leibe
Thisisa
pottopod
SlidefromPietroPerona,2004ObjectRecognitionworkshop
RBuegel,I562
SlidefromPietroPerona,2004ObjectRecognitionworkshop
Roughevolutionoffocusinrecognitionresearch
量“L
76qz46
Kw
lo工久2223
Jn
.nputimage。
u0A3g7
o
口
6C
0
0
O
)H
1
0
.9q>
01980s1990stoearly2000s2000-2010...
-
B
n
s
>
Inputs/outputs/assumptions
•Whatisthegoal?
-Sayyes/noastowhetheranobjectpresentinimage
And/or:
-Determineposeofanobject,e.g.forrobottograsp
-Categorizeallobjects
-Forcedchoicefrompoolofcategories
-Boundingboxonobject
-Fullsegmentation
-Buildamodelofanobjectcategory
Today
•Scanningwindowparadigm
•GIST
•HOG
•BoostedFaceDetection
•Local-featureAlignment;fromRobertsto
Lowe...
•BOWIndexing
Nextthreelectures
•Thursday:learningobjectcategoriesfromtheweb
-LSAandLDAmodels
-Harvestingtrainingdatafromtheweb
-Exploitingimageandtext
•Tues.Oct.20th:Generativemodels
-Condensation
-ISM
-Transformed-HDPs
-MoreContext...
•Thurs.Oct.22nd:AdvancedBOWkernels
-Pyramidandspatial-pyramidmatch
-Multi-kernellearning
-Latent-partSVMmodels
Scanningwindows...
Detectionviaclassification:Mainidea
Basiccomponent:abinaryclassifier
Kw
loCar/non-car
n—►
.J
uClassifier
o
口
6C
0
0
ONoYemtcaicar.
)H
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
Ifobjectmaybeinaclutteredscene,slideawindow
aroundlookingforit.
Kw
loCar/non-car
n—►
.J
uClassifier
o
口
6C
0
0
O
)H
1
0
(Essentially,ourskindetectorwasdoingthis,witha
.9q>
0windowthatwasonepixelbig.)
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
Fleshingoutthis
pipelineabitmore,
weneedto:
1.Obtaintrainingdata
2.Definefeatures
3.Defineclassifier
w
oKTrainingexamples
nl
.J
uuu
o
口
6C
0
0Car/non-car
OClassifier
)H
1
0Feature
.9q>^extraction.
0
-
B
n
s
>K.Grauman,B.Leibe
Detectionviaclassification:Mainidea
•Considerallsubwindowsinanimage
>Sampleatmultiplescalesandpositions(andorientations)
•Makeadecisionperwindow:
»“DoesthiscontainobjectcategoryXornot?”
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
o
CDJ
q
o
-
B
n
s
一
20
K.Grauman,B.Leibe
Featureextraction:
globalappearance
w
oK
nl
.J
u
o
口
6CSimpleholisticdescriptionsofimagecontent
0
0»grayscale/colorhistogram
O
)H»vectorofpixelintensities
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Eigenfaces:globalappearancedescription
Anearlyappearance-basedapproachtofacerecognition
Generatelow
dimensional
I*】❾国-->representation
ofappearance
75withalinear
一
一Eigenvectorscomputed
oTrainingimages
-fromcovariancematrixsubspace.
n
l
u
o
口
CProjectnew
6
Oimagesto”face
O
O
Hspace”.
l
oRecognitionvia
CDJ
q
onearestneighbors
-
B
ninfacespace
s
一
Turk&Pentland,1991
K.Grauman,B.Leibe
Featureextraction:globalappearance
•Pixel-basedrepresentationssensitivetosmallshifts
iJSBi
w
oK
nl
.J•Colororgrayscale-basedappearancedescriptioncanbe
u
osensitivetoilluminationandintra-classappearance
口
6Cvariation
0
0
Cartoonexample:
O
analbinokoala
)H
1
0
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
Gradient-basedrepresentations
•Consideredges,contours,and(oriented)intensity
gradients
一
.S,
I
O
5
1
口
6C
0
0
O
)H
L
O
G
Q
O
-
BN
S
>
K.Grauman,B.Leibe
Gradient-basedrepresentations
•Consideredges,contours,and(oriented)intensity
gradients
w
oK
nl
.J
u
o
口
6C
0
0•Summarizelocaldistributionofgradientswithhistogram
O
)HaLocallyorderless:offersinvariancetosmallshiftsandrotations
1
0>Contrast-normalization:trytocorrectforvariableillumination
.9q>
0
-
B
n
s
>K.Grauman,B.Leibe
I-
s
0
RepresentingImageStructurewith
“GIST”
Steerable
Vectorof
Globalfeatures
Oliva&Torralba(2001,2002,2006)
SlideCredit:OliviaNiir
WhatdoImagesStatisticssay
aboutDepth?
SlideCredit:Torralba,Olivia,J.HuangNiir
SceneScale
□''Thepointofviewthatanygivenobserveradoptsonaspecific
sceneisconstrainedbythevolumeofthescene."
□Howdoestheamountofcluttervaryagainstscenescaleinman
madeenvironments?Innaturalenvironments?
■■■■
■■■■SlideCredit:Torralba,Olivia,J.HuangNiir
CategorizationofNaturalScenes
ConfusionMatrix(in%usingLayouttemplate):
Classificationofprototypicalscenes(400/category)Localorganization:
CoastCountrysideForestMountaincorrectfor92%images
(4similarimageson7K-NN)
Coast88.68.9
Countryside9.885.2
0.43.6
Mountain0.44.6
SlideCredit:OliviaNiir
o
oH
Gradient-basedrepresentations:
Histogramsoforientedgradients(HoG)
75
一
o一
-
n
l
u
o
口
C
6
OMapeachgridcellintheinput
O
O
Hwindowtoahistogramcounting
l
othegradientsperorientation.
CDJ
q
o
-Codeavailable:
B
n
shttp://pascal.inrialpes.fr/soft/olt/
一
DalalDTriggs,CVPR2005
K.Grauman,B.Leibe
Slidecredit:Dalal,Triggs,P.Barnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizePerson/
Input_ComputeColledHOGsLinear
aiima&—►—►intospatial&-Aoveroverlapping——►overdetection—>non-person
imagegradientsS\M
colourorientationcellsspntialblockswindowclassification
•Testedwith
-RGB
-LAB
一Grayscale
•GammaNormalizationandCompression
一Squareroot
-Log
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
-101□□
centered□□
diagonal
-11
uncentered
□□H0□
1-808-1S□
cubic-Sobel
corrected
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizeColledHOGsPerson/
InputComputeLinear
gamma&->intospatial&Aoveroverlapping->overdetection>―>non-person
imagegradientsSVM
colourorientationcellsspntialblockswindowclassification
Histogramofgradient
orientations
-Orientation-Position
90
13545
1800
225315
270
-Weightedbymagnitude
Slidecredit:Dalal,Triggs,RBarnum
NormalizeWeightedvoteContrastnormalizeColledHOGsPerson/
Input_ComputeLinear
gamma&intospatial&Aoveroverlappingoverdetection―►non-person
imagegradientsSVM
colourorientationcellsspntialblockswindowclassification
R-HOGC-HOG
ft
爸
0
王
1±
RadialBins.AnsularBins
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
image
classification
R-HOGC-HOG
CellCenterBin
-H
a
o
O
王
RadialBins.AngularBins
Ll-norm:v——>v/(||v||i+£)Ll-sqrt:v»\/v/(||v||i+6)
L2-norm:v—,+FL2-hys:L2-norm,plusclippingat.2andrcnomalizing
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Person/
Input
non-person
imageclassification
Slidecredit:Dalal,Triggs,RBarnum
Slidecredit:Dalal,Triggs,RBarnum
BoostedFaceDetection
withGradientFeatures
Gradient-basedrepresentations:
Rectangularfeatures
w
K
o
l
n
l
u
o
口
C
6
O
O
OComputedifferencesbetweensumsofpixelsinrectangles
H
l
o
gCapturescontrastinadjacentspatialregions,efficientto
q
ocompute
-
B
n
sEachfeatureparameterizedbyscale,position,type.
>
Viola&Jones,CVPR2001
K.Grauman,B.Leibe
ioosting
•Buildastrongclassifierbycombiningnumberof"weak
classifiers”,whichneedonlybebetterthanchance
•Sequentiallearningprocess:ateachiteration,adda
weakclassifier
•Flexibletochoiceofweaklearner
75
一
o一
->includingfastsimpleclassifiersthatalonemaybeinaccurate
n
l
u
o
口1
C•WeIIlookatFreund&Schapire'sAdaBoostalgorithm
6
O
OaEasytoimplement
O
H
l>BaselearningalgorithmforViola-Jonesfacedetector
o
CDJ
q
o
-
B
n
s
一
46
K.Grauman,B.Leibe
AdaBoost:Intuition
Considera2-dfeature
Weakspacewithpositiveand
Classifier1negativeexamples.
Eachweakclassifiersplits
w
K
othetrainingexampleswith
l
n
latleast50%accuracy.
U
0
4
CExamplesmisclassifiedby
6
0
0apreviousweaklearner
0)Haregivenmoreemphasis
1
0atfuturerounds.
,9q>
0
-
B
n
s
一FigureadaptedfromFreundandSchapire
47
K.Grauman,B.Leibe
AdaBoost:Intuition
Weights
Increased
Weak
Classifier1
•oWeak
ooClassifier2
-
,-s
0
1
n
l
u
o
C口
6
O
O
O
H
l
o
.sq>
o
-
B
n
s
一48
K.Grauman,B.Leibe
AdaBoost:Intuition
75
一
o一
-
n
l
uWeak
oclassifier3
口
C
6
O
O
OFinalclassifieris
H
lcombinationofthe
oweakclassifiers
CDJ
q
o
-
B
n
s
一
49
K.Grauman,B.Leibe
•Givenexampleimages(J;I,,(^n,?/n)where
yi=0,1fornegativeandpositiveexamplesrespec
tively.AdaBoostAlgorithm
•Initializeweights=for仍=0,1respecStartwith
tively,wheremandIarethenumberofnegativesanduniformweights
positivesrespectively.ontraining
•Forf=1,...,T:examples
1.Normalizetheweights.
ForTrounds
sothatwtisaprobabilitydistribution.
Evaluate
2.Foreachfeature,j,trainaclassifierhjwhich
isrestrictedtousingasinglefeature.Theweightederror
errorisevaluatedwithrespecttowt,e;=foreachfeature,
皿电(g)-yi\.pickbest.
3.Choosetheclassifier.In.withthelowesterroret.
4.Updatetheweights:
Re-weighttheexamples:
-+i,t=皿,iB;CiIncorrectlyclassified->moreweight
whereei=0ifexampleXiisclassifiedcorCorrectlyclassified->lessweight
rectly,a=1otherwise,and仇=y1七■.
•Thefinalstrongclassifieris:
Finalclassifieriscombinationofthe
刀,1a力加(/)NI£着at
'-10otherwiseweakones,weightedaccordingto
errortheyhad.
wherec\f=log+Freund&Schapire1995
Example:Facedetection
•Frontalfacesareagoodexampleofaclasswhere
globalappearancemodels+aslidingwindow
detectionapproachfitwell:
>Regular2Dstructure
>Centeroffacealmostshapedlikea“patch"/window
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
o
CDJ
q
o•Nowwe'lltakeAdaBoostandseehowtheViola-
-
B
nJonesfacedetectorworks
s
一
51
K.Grauman,B.Leibe
Featureextraction
“Rectangular”filters
Featureoutputisdifference
betweenadjacentregions
75
一
o一
-
n
lEfficientlycomputable
u
owithintegralimage:any
口
Csumcanbecomputed
6
O
Oinconstanttime
O
H
l
oAvoidscalingimages9
CDJscalefeaturesdirectly
q
oforsamecost=/+(A+3+C+Z))—(A+C+/+B)
-
B
n
s
一
Viola&Jones,CVPR200152
K.Grauman,B.Leibe
Largelibraryoffilters
75
一
o一
-
n
l
u
o
口
C
6
O
O
O
H
l
oUseAdaBoostbothtoselecttheinformative
CDJ
qfeaturesandtoformtheclassifier
o
-
B
n
s
一
Viola&Jones,CVPR2001
AdaBoostforfeature+classifierselection
•Wanttoselectthesinglerectanglefeatureandthreshold
thatbestseparatespositive(faces)andnegative(non
faces)trainingexamples,intermsofweightederror.
ftResultingweakclassifier:
a一e■o~~e㊀।eooo〉
T.o
l
n+1iff(x)>9
ltt
ht(x)=
Ui
0-1otherwise
4
C
6■6^0。㊀OOO———
0
0
:——f[(x)一Fornextround,reweightthe
0)Hexamplesaccordingtoerrors,
。1
①Outputsofapossiblechooseanotherfilter/threshold
q一rectanglefeatureon
ocombo.
-facesandnon-faces.
B
n
s
>Viola&Jones,CVPR2001
•Givenexampleimages(J;I,,(^n,?/n)where
yi=0,1fornegativeandpositiveexamplesrespec
tively.AdaBoostAlgorithm
•Initializeweights=for仍=0,1respecStartwith
tively,wheremandIarethenumberofnegativesanduniformweights
positivesrespectively.ontraining
•Forf=1,...,T:examples
1.Normalizetheweights.
ForTrounds
sothatwtisaprobabilitydistribution.
Evaluate
2.Foreachfeature,trainaclassifierh)which
isrestrictedtousingasinglefeature.Theweightederror
errorisevaluatedwithrespecttowt,与=foreachfeature,
皿陶(g)一词.pickbest.
3.Choosetheclassifier,lit,withthelowesterrore.t.
4.Updatetheweights:
Re-weighttheexamples:
Wt+l,i=皿,俐"Incorrectlyclassified->moreweight
wheree/=0ifexamplexiisclassifiedcor-Correctlyclassified->lessweight
•Thefinalstrongclassifieris:
Finalclassifieriscombinationofthe
i£屋1。也(1)>}E?=i
h[x)=
0otherwiseweakones,weightedaccordingto
errortheyhad.
whereat=logJ-Freund&Schapire1995
AdaBoostforEfficientFeature
Selection
•ImageFeatures=WeakClassifiers
•Foreachroundofboosting:
-Evaluateeachrectanglefilteroneachexample
-Sortexamplesbyfiltervalues
-Selectbestthresholdforeachfilter(minerror)
•Soiledlistcanbequicklyscaimedfortheoptimalthreshold
-Selectbestfilter/thresholdcombination
-Weightonthisfeatureisasimplefunctionofen*orrate
-Reweightexamples
ViolaandJones.Robustobjectdetectionusingaboostedcascadeofsimplefeatures.CVPR2001
•Evenifthefiltersarefasttocompute,each
newimagehasalotofpossiblewindowsto
search.
•Howtomakethedetectionmoreefficient?
Cascadingclassifiersfordetection
Forefficiency,applyless
accuratebutfasterclassifiers
firsttoimmediatelydiscard
windowsthatclearlyappearto
benegative;e.g.,
w
oKaFilterforpromisingregionswithan
nl
.Jinitialinexpensiveclassifier
u
o
口aBuildachainofclassifiers,choosing
6Ccheaponeswithlowfalsenegative
0
0ratesearlyinthechain
O
)H
1
0
.9q>
0Fleuret&Geman,IJCV2001
-RowleyetaL,PAMI1998
B
n
sViola&Jones,CVPR200158
>K.Grauman,B.LeibeFigurefromViola&JonesCVPR2001
Viola-JonesFaceDetector:Summary
翻・■■可■■)■/■
♦电•感所国,通・・F
■*妙硒I二中
再⑥三■-
♦5电««♦费型IT
卧♦电•即♦出■♦卜
wJ/KJtL,・<AJ
w
oK
nl
.J
u
o
口
C
6Non-faces
0
0
O•Trainwith5Kpositives,350Mnegatives
)H
1•Real-timedetectorusing38layercascade
0
•6061featuresinfinallayer
.9q>
0•[ImplementationavailableinOpenCV:
-
B/technology/computing/opencv/]
n
s59
>K.Grauman,B.Leibe
Viola-JonesFaceDetector:Results
Firsttwofeatures
selected
r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年冀教版选择性必修3化学上册月考试卷含答案
- 2025年外研版2024八年级地理下册月考试卷含答案
- 2025年新科版八年级地理上册阶段测试试卷含答案
- 2025年苏教版必修1地理上册阶段测试试卷含答案
- 2024年北师大新版必修3地理上册阶段测试试卷含答案
- 二零二五年度美容院美容师职业发展规划聘用合同3篇
- 2025年度专业潜水员聘用合同范本大全4篇
- 2025年度定制门窗及智能控制系统集成合同4篇
- 2025年度苗木培育与良种选育技术合作合同4篇
- 二零二五年度装配式建筑泥工专业服务合同4篇
- 安徽省蚌埠市2025届高三上学期第一次教学质量检查考试(1月)数学试题(蚌埠一模)(含答案)
- 【探迹科技】2024知识产权行业发展趋势报告-从工业轰鸣到数智浪潮知识产权成为竞争市场的“矛与盾”
- 《中国政法大学》课件
- GB/T 35270-2024婴幼儿背带(袋)
- 辽宁省沈阳名校2025届高三第一次模拟考试英语试卷含解析
- 2024-2025学年高二上学期期末数学试卷(新题型:19题)(基础篇)(含答案)
- 2022版艺术新课标解读心得(课件)小学美术
- Profinet(S523-FANUC)发那科通讯设置
- 第三章-自然语言的处理(共152张课件)
- 医学教程 常见化疗药物归纳
- 行政事业单位国有资产管理办法
评论
0/150
提交评论