上海市三林中学2025届高考数学四模试卷含解析_第1页
上海市三林中学2025届高考数学四模试卷含解析_第2页
上海市三林中学2025届高考数学四模试卷含解析_第3页
上海市三林中学2025届高考数学四模试卷含解析_第4页
上海市三林中学2025届高考数学四模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市三林中学2025届高考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(

)A. B. C. D.2.已知,则()A.5 B. C.13 D.3.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.4.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根5.已知复数,满足,则()A.1 B. C. D.56.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.7.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.8.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆9.抛物线的准线方程是,则实数()A. B. C. D.10.已知等差数列的前n项和为,且,则()A.4 B.8 C.16 D.211.已知实数、满足不等式组,则的最大值为()A. B. C. D.12.在中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知,则的值为______.14.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.15.已知函数,若恒成立,则的取值范围是___________.16.已知数列满足,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设都是正数,且,.求证:.18.(12分)已知函数,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.20.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.21.(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.(1)求椭圆的标准方程;(2)若椭圆外一点满足,平行于轴,,动点在直线上,满足.设过点且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.22.(10分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】=,当时时,单调递减,时,单调递增,且当,当,

当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.2、C【解析】

先化简复数,再求,最后求即可.【详解】解:,,故选:C【点睛】考查复数的运算,是基础题.3、D【解析】

由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【详解】解:如图,

∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,

设正方体的棱长为,则,∴.

取,连接,则共面,在中,设到的距离为,

设到平面的距离为,

.

故选D.【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.4、C【解析】

由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.5、A【解析】

首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.6、A【解析】

分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.7、D【解析】

设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.8、B【解析】

根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.9、C【解析】

根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.10、A【解析】

利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.11、A【解析】

画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.12、D【解析】

通过列举法可求解,如两角分别为时【详解】当时,,但,故充分条件推不出;当时,,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.14、【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.15、【解析】

求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.16、【解析】

项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】

利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】试题分析:(1)由已知利用两角和与差的三角函数公式及倍角公式将的解析式化为一个复合角的三角函数式,再利用正弦型函数的最小正周期计算公式,即可求得函数的最小正周期;(2)由(1)得函数,分析它在闭区间上的单调性,可知函数在区间上是减函数,在区间上是增函数,由此即可求得函数在闭区间上的最大值和最小值.也可以利用整体思想求函数在闭区间上的最大值和最小值.由已知,有的最小正周期.(2)∵在区间上是减函数,在区间上是增函数,,,∴函数在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.19、(1);(2)见解析【解析】

将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】(Ⅰ)由题意得原式的最小正周期为.(Ⅱ),.当,即时,;当,即时,.综上,得时,取得最小值为0;当时,取得最大值为.【点睛】本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要计算正确,属于基础题20、(Ⅰ);(Ⅱ)面积的最小值为9,.【解析】

(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【详解】(Ⅰ)∵椭圆:,长轴的右端点与抛物线:的焦点重合,∴,又∵椭圆的离心率是,∴,,∴椭圆的标准方程为.(Ⅱ)过点的直线的方程设为,设,,联立得,∴,,∴.过且与直线垂直的直线设为,联立得,∴,故,∴,面积.令,则,,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为.【点睛】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.21、(1);(2)见解析【解析】

(1)根据点到直线的距离公式可求出a的值,即可得椭圆方程;(2)由题意M(x0,y0),N(x0,y1),P(2,t),根据,可得y1=2y0,由,可得2x0+2y0t=6,再根据向量的运算可得,即可证明.【详解】(1)左顶点A的坐标为(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴椭圆C的标准方程为+y2=1,(2)由题意M(x0,y0),N(x0,y1),P(2,t),则依题意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴•=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故过点N且垂直于OP的直线过椭圆C的右焦点F.【点睛】本题考查了椭圆方程的求法,直线和椭圆的关系,向量的运算,考查了运算求解能力和转化与化归能力,属于中档题.22、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】

(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,,①当时,,所以,②当时,,③当时,,所以,④……当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论