版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页湘教版(2024)七年级上册数学第4章图形的认识单元测试卷一.选择题(共10小题,满分30分)1.平板电脑支架方便用户在不同位置和角度观看平板电脑,如图是支架侧面的平画示意图,其中∠1还可以表示为()A.∠A B.∠DAC C.∠BAC D.∠ACE2.如图:O为直线AB上的一点,OC为一条射线,OD平分∠AOC,OE平分∠BOC,图中与∠AOD互余的角共有()A.1个 B.2个 C.4个 D.6个3.圆柱、圆锥、棱柱、球这四个几何体的截面形状不可能是长方形的有()个.A.1 B.2 C.3 D.44.如图,点M,P,N是直线l上从左至右的三个点,下列说法错误的是()A.点P在直线MN上 B.点P在线段MN上 C.点N在线段MP上 D.点N在射线MP上5.学校在小杰家北偏东20°的方向上,那么小杰家位于学校的方向为()A.南偏东70° B.南偏西70° C.南偏东20° D.南偏西20°6.杭州奥林匹克体育中心体育场形状与如图几何体类似,外墙带有丰富的花边状装饰.下列图形绕虚线旋转一周,能形成该几何体的是()A. B. C. D.7.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点之间的所有连线中,线段最短 B.过一点,有无数条直线 C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离8.如图,O是直线AB上一点,过O作任意射线OM,OC平分∠AOM,OD平分∠BOM,则∠COD的度数是()A.80° B.90° C.100° D.不能确定9.下面几种图形中,平面图形的个数有()A.1个 B.2个 C.3个 D.4个10.借助圆规,可得图中最长的线段是()A.BA B.CA C.DA D.EA二.填空题(共10小题,满分30分)11.2024年9月26日,我校第三十届校园体育节隆重开幕,开幕式上八年级同学的精彩扇舞体现了中国风的元素.“打开折扇得到扇面”用数学知识可以解释为.12.用圆规画一个周长是25.12厘米的圆,圆规两脚之间的距离是厘米,画出圆的面积是平方厘米.(π取3.14)13.七巧板是一种古老的中国传统智力游戏.在如图所示的七巧板中,若正方形ABCD的边长为4,则正方形EFGH的边长为.14.如图,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“平衡线”.若∠AOB=78°,且射线OC是∠AOB的“平衡线”,则∠AOC的度数为.15.单位换算:56.2°=°′.16.架设电线时,两根电线杆就能将电线架在空中,这是因为.17.上午8:25时,时钟的时针和分针的夹角(小于平角的角)度数是.18.如图,已知线段AB=10cm,点M是AB的中点,点N在线段AB上,若AN=7cm,则MN的长为cm.19.线段AB被分成2:3:4三部分,第一部分与第三部分中点的距离为4.2cm,则最长部分的长为cm.20.把正方体的六个面分别标上1,2,3,4,5,6,现将上述四个完全一样的正方体排成一个如图水平放置的长方体,那么长方体的下底面的所有数字之和为.三.解答题(共7小题,满分60分)21.综合实践课上,小明将一副三角板的直角顶点靠在一起,在同一平面内进行拼图学习,∠BAC=∠DAE=90°,∠B=45°,∠D=30°.(1)如图①,当△ABC与△ADE一边重合时,求∠BCD的度数;(2)在备用图上,固定△ABC,转动△ADE,当∠CAD=40°时,求∠BAD的度数.22.如图是一张长方形纸片,长方形的长为6cm,宽为4cm,若将此长方形纸片绕它的一边所在直线旋转一周,得到一个几何体.(1)这个几何体的名称是,有个平面,个曲面;(2)求得到的这个几何体的体积(结果保留π).23.尺规作图.如图,已知在平面上有三个点A,B,C,请按下列要求作图:(1)作直线AB;(2)作射线AC;(3)在射线AC上作线段AD,使AD=2AB.24.【问题初探】:(1)如图,平面上有四个点T、Y、R、S,根据下列语句画图:①作射线TR;②作直线TY、RS交于点M;③连接TS、RY交于点O;(2)我们还可以观察到,经过图中的不在同一直线上的4个点,最多能画出条直线;经过不在同一直线上的5个点,最多能画出直线;【类比分析】:(3)如果在同一平面里,有不在同一条直线上的20个点,你能算出共有多少条线段吗?【学以致用】:(4)按照这个规律回答下列问题:①2022年卡塔尔世界杯足球赛进入8强赛(即有8个队参加比赛)时,如果进行的是单循环赛(每两个队只比赛一次),则需要进行多少场比赛?②某球迷乘火车从A站出发,沿途经过3个站后到达B站,那么在A、B两站之间需要多少种不同的票价?需要多少种车票?25.【综合与实践】结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.26.求下列各图中的阴影部分面积(结果用π表示):(1)(2)27.如图,OC是∠AOD的平分线,OE是∠BOD的平分线,∠AOB=130°.(1)求∠COE的度数是多少?(2)如果∠COD=20°,求∠BOE的度数.
参考答案与试题解析题号12345678910答案CBBCDDCBBC一.选择题(共10小题,满分30分)1.【解答】解:∠1还可以表示为∠BAC.故选:C.2.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOD=∠COD,∠BOE=∠COE,又∵∠AOB=180°,即∠AOD+∠COD+∠COE+∠BOE=180°,∴∠AOD+∠COE=90°,∠AOD+∠BOE=90°,∴与∠AOD互余的角共有2个.故选:B.3.【解答】解:圆柱的截面可能是圆形、长方形、梯形、椭圆形;圆锥的截面可能是圆形、椭圆形、三角形和曲边形,不可能是长方形;棱柱的截面可能是三角形、四边形等,因此可能是长方形;球的截面形状是圆,不可能是长方形;所以截面形状不可能是长方形的有2个.故选:B.4.【解答】解:A.点P在直线MN上,正确,故选项A不符合题意;B.点P在线段MN上,正确,故选项B不符合题意;C.点N在线段MP的延长线上,故选项C错误,符合题意;D.点N在射线MP上,正确,故选项D不符合题意.故选:C.5.【解答】解:学校在小杰家北偏东20°的方向上,那么小杰家位于学校的方向为南偏西20°.故选:D.6.【解答】解:A.图形绕虚线旋转一周,形成的几何体的是一个圆台且上底小,下底大,故原选项不合题意;B.图形绕虚线旋转一周,形成的几何体的是一个球,故原选项不合题意;C.图形绕虚线旋转一周,形成的几何体的是一个圆柱,故原选项不合题意;D.图形绕虚线旋转一周,形成的几何体的是一个圆台,且上底大,下底小,故原选项符合题意.故选:D.7.【解答】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:C.8.【解答】解:∵OC平分∠AOM,OD平分∠BOM,∴∠MOC=∠AOM,∠MOD=∠BOM,∴∠COD=∠MOC+∠MOD=∠AOM+∠BOM=(∠AOM+∠BOM)=×180°=90°.故选:B.9.【解答】解:三角形、正方形是平面图形,正方体和球是立体图形,因此平面图形有2个,故B正确.故选:B.10.【解答】解:通过用圆规比较图中的四条线段,其中最长的DA,故选:C.二.填空题(共10小题,满分30分)11.【解答】解:“打开折扇得到扇面”用数学知识可以解释为线动成面.故答案为:线动成面.12.【解答】解:25.12÷3.14÷2=8÷2=4(厘米),3.14×42=3.14×16=50.24(平方厘米).故圆规两脚之间的距离是4厘米,画出圆的面积是50.24平方厘米.故答案为:4,50.24.13.【解答】解:∵点G是CD的中点,CD=4,∴CG=CD=2,∵△CHG是等腰直角三角形,∴CH=HG=CG=,∴正方形EFGH的边长为,故答案为:.14.【解答】解:由题意,分以下四种情况:①当∠AOB=2∠AOC时,射线OC是∠AOB的“平衡线”,∵∠AOB=78°,∴;②当∠AOB=2∠BOC时,射线OC是∠AOB的“平衡线”,∵∠AOB=78°,∴,∴∠AOC=∠AOB﹣∠BOC=39°;③当∠AOC=2∠BOC时,射线OC是∠AOB的“平衡线”,∵∠AOB=78°,∠AOC+∠BOC=∠AOB,∴,解得∠AOC=52°;④当∠BOC=2∠AOC时,射线OC是∠AOB的“平衡线”,∵∠AOB=78°,∠AOC+∠BOC=∠AOB,∴∠AOC+2∠AOC=78°,解得∠AOC=26°;综上,∠AOC的度数为26°或39°或52°,故答案为:26°或39°或52°.15.【解答】解:∵0.2×60=12,56.2°=56°12′.故答案为:56,12.16.【解答】解:架设电线时,两根电线杆就能将电线架在空中,这是因为两点确定一条直线,故答案为:两点确定一条直线.17.【解答】解:∵分针每分钟转动360°÷60=6°,时针每分钟转动360°÷12÷60=0.5°,∴8:25时针和分针的夹角(小于平角的角)度数为:(8×30°+25×0.5°)﹣25×6°=102.5°,故答案为:102.5°.18.【解答】解:由题意可得:,∵AN=7cm,∴MN=AN﹣AM=7﹣5=2(cm).故答案为:2.19.【解答】解:如图,AC:CD:BD=2:3:4,点M是AC的中点,点N是BD的中点设AB=9X,则AC=2X,CD=3X,BD=4X∴CM=AC=X,DN=BD=2X∴MN=CM+CD+DN=6X=4.2∴X=0.7∴BD是最长的部分,为4X=2.8cm.20.【解答】解:由第四个正方体上面的三个数字:2、5、6,再结合第一个正方体和第二个正方体上面的数字2相邻的面数字为1、3,从而确定与2相邻的四个面的数字是1、3、5、6;再由第三个正方体上数字:1、6不是对着的面,而是相邻的面可知:数字1与数字5是对面上的数字;数字3与数字6是对面上的数字;则数字2与数字4是对面上的数字;∴上述排列的四个小正方体上面一排数字:2、3、6、5的对面(即下面)数字为:4、6、3、1,∴长方体的下底面的所有数字之和为4+6+3+1=14,故答案为:14.三.解答题(共7小题,满分60分)21.【解答】解:(1)根据题意得:∠ACB=45°,∴∠BCD=180°﹣∠ACB=135°;(2)如图,当点D在AC边的左侧时,∠BAD=∠BAC﹣∠CAD=90°﹣40°=50°;如图,当点D在AC边的右侧时,∠BAD=∠BAC+∠CAD=90°+40°=130°;综上所述,∠BAD的度数为50°或130°.22.【解答】解:(1)由题意可得:得到的几何体是圆柱,有2个平面,1个曲面,故答案为:圆柱,2,1;(2)①若绕4cm的边所在直线旋转一周,得到的是底面半径为6cm,高为4cm的圆柱,它的体积为:π×62×4=144π(cm3);②若绕6cm的边所在直线旋转一周,得到的是底面半径为4cm,高为6cm的圆柱,它的体积为:π×42×6=96π(cm3);综上:得到的几何体的体积为144πcm3或96πcm3.23.【解答】解:(1)连接AB,并延长AB、BA,得到直线AB;(2)连接AC,延长AC,得到射线AC;(3)以A点为圆心,线段AB长为半径作圆,交射线AC于点E,再以E点为圆心,线段AB长为半径作圆,交射线AC于点D,线段AD即是所求.图形如下:24.【解答】解:(1)①作射线TR,如图所示;②作直线TY、RS交于点M,如图所示;③连接TS、RY交于点O,如图所示.(2)图中的不在同一直线上的4个点,最多能画出6条直线,图中的不在同一直线上的5个点,最多能画出10条直线;故答案为:6,10;(3)∵每两个点确定一条线段,∴每个点都能跟剩余的19的点组成一条线段,∴可以画出:条线段;(4)①∵每个队都要跟剩余的7个队踢一场比赛,且每两个队只比赛一次,∴需要进行场比赛;②由题意,得从A到B共有5个站点,每两个站点之间票价不同,∴共有:种不同的票价;∵从A到B和从B到A的票的种类不一样,∴需要10×2=20种车票.25.【解答】解:(1)①数轴上表示5和2的两点之间的距离是5﹣2=3;②数轴上表示﹣2和﹣6的两点之间的距离是﹣2﹣(﹣6)=4;③数轴上表示﹣4和3的两点之间的距离是3﹣(﹣4)=7;故答案为:①3,②4,③7;(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,故答案为:|m﹣n|.(3)应用:①∵|a﹣3|=7,∴a﹣3=7或a﹣3=﹣7,解得a=10或﹣4,故答案为:10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高考物理二轮复习 第三部分 揭秘高考阅卷现场
- 检验与临床的沟通及案例分析
- 高一 部编版 语文 上册 第八单元《有效积累词语让语言丰富多彩》课件
- 高一 人教版 地理 第二单元《第一节 大气的组成和垂直分层(第2课时)》课件
- 粤教版 高中物理必修一 第三章 相互作用《第二节 弹力》课件
- 《代谢调节》课件
- 2025年中考英语一轮教材复习 写作话题8 计划与安排
- 2025年中考英语一轮教材复习 七年级(下) Unit 6-3
- 有机稻米加工综合利用改扩建项目可行性研究报告
- 开办砂石料场建设项目可行性研究报告
- 《康复评定》期末考试复习题库(含答案)
- 身临其境 课件-2024-2025学年人教版(2024)初中美术七年级上册
- 吉林省长春市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 中国宝安财务报表分析报告
- 新《药品管理法》考试题及答案
- HY/T 0394-2024海洋观测装备水下结构防腐防污技术要求
- 【课件】第11课《再塑生命的人》课件-2024-2025学年七年级语文上册课件(统编版2024)
- 学校食堂舆情处置预案
- 《能源转型绿色发展》演讲课件
- 2024年国考公务员行测真题及参考答案
- 2024年人教版八年级数学(上册)期末试卷及答案(各版本)
评论
0/150
提交评论