版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CenterforSecurityandEmergingTechnology|1
ThisworkshopandtheproductionofthefinalreportwasmadepossiblebyagenerouscontributionfromtheMicrosoftCorporation.Theviewsinthisdocumentarestrictlytheauthors’anddonotnecessarilyrepresenttheviewsoftheU.S.government,the
MicrosoftCorporation,orofanyinstitution,organization,orentitywithwhichtheauthorsmaybeaffiliated.
Referencetoanyspecificcommercialproduct,process,orservicebytradename,
trademark,manufacturer,orotherwise,doesnotconstituteorimplyanendorsement,recommendation,orfavoringbytheU.S.government,includingtheU.S.DepartmentoftheTreasury,theU.S.DepartmentofHomelandSecurity,andtheCybersecurityand
InfrastructureSecurityAgency,oranyotherinstitution,organization,orentitywithwhichtheauthorsmaybeaffiliated.
CenterforSecurityandEmergingTechnology|2
ExecutiveSummary
Asartificialintelligencecapabilitiescontinuetoimprove,criticalinfrastructure(CI)
operatorsandprovidersseektointegratenewAIsystemsacrosstheirenterprises;
however,thesecapabilitiescomewithattendantrisksandbenefits.AIadoptionmayleadtomorecapablesystems,improvementsinbusinessoperations,andbettertoolstodetectandrespondtocyberthreats.Atthesametime,AIsystemswillalso
introducenewcyberthreatsthatCIprovidersmustcontendwith.Lastyear’sAI
executiveorderdirectedthevariousSectorRiskManagementAgencies(SRMAs)to
“evaluateandprovide…anassessmentofpotentialrisksrelatedtotheuseofAIin
criticalinfrastructuresectorsinvolved,includingwaysinwhichdeployingAImaymakecriticalinfrastructuresystemsmorevulnerabletocriticalfailures,physicalattacks,andcyber-attacks.”
Despitetheexecutiveorder’srecentdirection,AIuseincriticalinfrastructureisnot
new.AItoolsthatexcelinpredictionandanomalydetectionhavebeenusedforcyberdefenseandotherbusinessactivitiesformanyyears.Forexample,providershavelongreliedoncommercialinformationtechnologysolutionsthatarepoweredbyAIto
detectmaliciousactivity.WhathaschangedisthatnewgenerativeAItechniqueshavebecomemorecapableandoffernovelopportunitiesforCIoperators.Potentialuses
includemorecapablechatbotsforcustomerinteraction,enhancedthreatintelligencesynthesisandprioritization,fastercodeproductionprocesses,and,morerecently,AIagentsthatcanperformactionsbasedonuserprompts.
CIoperatorsandsectorsareattemptingtonavigatethisrapidlychanginganduncertainlandscape.Fortunately,thereareanaloguesfromcybersecuritythatwecandrawon.Yearsago,innovationsinnetworkconnectivityprovidedCIoperatorswithawayto
remotelymonitorandoperatemanysystems.However,thisalsocreatednewattackvectorsformaliciousactors.PastlessonscanhelpinformhoworganizationsapproachtheintegrationofAIsystems.Today,riskmayariseintwoways:fromAIvulnerabilitiesorfailuresinsystemsdeployedwithinCIandfromthemalicioususeofAIsystems
againstCIsectors.
Thisworkshopreportprovidestechnicalmitigationsandpolicyrecommendationsfor
managingtheuseofAIincriticalinfrastructure.Severalfindingsandrecommendationsemergedfromthisdiscussion.
●ResourcedisparitiesbetweenCIproviderswithinandacrosssectorshavea
majorimpactontheprospectsofAIadoptionandmanagementofAI-relatedrisks.Furtherprogramsareneededtosupportlesswell-resourcedproviders
CenterforSecurityandEmergingTechnology|3
withAI-relatedassistance,includingfinancialresources,datafortraining
models,requisitetalentandstaff,forumsforcommunication,andavoiceinthebroaderAIdiscourse.Expandingformalandinformalmeansofmutual
assistancecouldhelpclosethedisparitygap.Theseinitiativesshareresources,talent,andknowledgeacrossorganizationstoimprovethesecurityand
resiliencyofthesectorasawhole.Theyincludeformalprograms,suchas
sharingpersonnelinresponsetoincidentsoremergencies,andinformaleffortssuchasdevelopingbestpracticesorvettingproductsandservices.
●ThereisarecognizedneedtointegrateAIriskmanagementintoexisting
enterpriseriskmanagementpractices;however,ownershipofAIriskcanbe
ambiguouswithincurrentcorporatestructures.ThisriskwasreferredtobyoneparticipantastheAI“hotpotato”beingtossedaroundtheC-suite.Aclear
designationofresponsibilityforAIriskwithinthecorporatestructureisneeded.
●AmbiguitybetweenAIsafetyandAIsecurityalsoposessubstantialchallengestooperationalizingAIriskmanagement.OrganizationsareoftenunsurehowtoapplyguidancefromtheNationalInstituteofStandardsandTechnology’s
recentlypublishedAIriskmanagementframeworkalongsidethecybersecurityframework.FurtherguidanceonhowtoimplementaunifiedapproachtoAIriskisneeded.Tailoringandprioritizingthisguidancewouldhelpmakeitmoreaccessibletolesswell-resourcedprovidersandthosewithspecific,often
bespoke,needs.
●Whiletherearewell-establishedchannelsforcybersecurityinformationsharing,thereisnoanalogueinthecontextofAI.SRMAsshouldleverageexisting
venues,suchastheInformationSharingandAnalysisCenters,forAIsecurityinformationsharing.SharingAIsafetyissues,mitigations,andbestpracticesisalsocritical,butthechannelstodosoareunclear.ClarityonwhatconstitutesanAIincident,whichincidentsshouldbereported,thethresholdsforreporting,andwhetherexistingcyber-incidentreportingchannelsaresufficientwouldbe
valuable.Topromotecross-sectorvisibilityandanalysisthatspansbothAIsafetyandsecurity,thesectorsshouldconsiderestablishingacentralizedanalysiscenterforAIsafetyandsecurity.
●SkillstomanagecyberandAIrisksaresimilarbutnotidentical.The
implementationofAIsystemswillrequireexpertisethatmanyCIprovidersdonotcurrentlyhave.Assuch,providersandoperatorsshouldactivelyupskilltheircurrentworkforcesandseekopportunitiestocross-trainstaffwith
CenterforSecurityandEmergingTechnology|4
relevantcybersecurityskillstoeffectivelyaddresstherangeofAI-andcyber-relatedrisks.
●GenerativeAIintroducesnewissuesthatcanbemoredifficulttomanageand
thatwarrantcloseexamination.CIprovidersshouldremaincautiousand
informedbeforeadoptingnewerAItechnologies,particularlyforsensitiveormission-criticaltasks.Assessingwhetheranorganizationisevenreadyto
adoptthesesystemsisacriticalfirststep.
CenterforSecurityandEmergingTechnology|5
TableofContents
ExecutiveSummary 2
Introduction 6
Background 7
ResearchMethodology 7
TheCurrentandFutureUseofAIinCriticalInfrastructure 8
Figure1.ExamplesofAIUseCasesinCriticalInfrastructurebySector 10
Risks,Opportunities,andBarriersAssociatedwithAI 11
Risks 11
Opportunities 12
BarrierstoAdoption 13
Observations 14
DisparitiesBetweenandWithinSectors 14
UnclearBoundaryBetweenAIandCybersecurity 16
ChallengesinAIRiskManagement 17
FracturedGuidanceandRegulation 18
Recommendations 21
Cross-CuttingRecommendations 21
ResponsibleGovernmentDepartmentsandAgencies 23
Sectors 25
Organizations 25
CriticalInfrastructureOperators 26
AIDevelopers 26
Authors 28
AppendixA:BackgroundResearchSources 29
Government/Intergovernmental 29
Science/Academia/NongovernmentalOrganizations/FederallyFundedResearch
andDevelopmentCenters/Industry 29
DocumentsMentionedDuringWorkshop 30
Endnotes 31
CenterforSecurityandEmergingTechnology|6
Introduction
InOctober2023,theWhiteHousereleasedanExecutiveOrderontheSafe,Secure,
andTrustworthyDevelopmentandUseofArtificialIntelligence.Section4.3ofthe
orderspecificallyfocusesonthemanagementofAIincriticalinfrastructureand
cybersecurity
.1
WhileregulatorsdebatestrategiesforgoverningAIatthestate,
federal,andinternationallevels,protectingCIremainsatoppriorityformany
stakeholders.However,therearenumerousoutstandingquestionsonhowbesttoaddressAI-relatedriskstoCI,giventhefracturedregulatorylandscapeandthe
diversityamongthe16CIsectors.
Toaddresssomeofthesequestions,theCenterforSecurityandEmergingTechnology(CSET)hostedanin-personworkshopinJune2024thatbroughttogether
representativesfromtheU.S.federalgovernment,thinktanks,industry,academia,andfiveCIsectors(communications,informationtechnology,water,energy,andfinancialservices).ThediscussionwasframedaroundtheissueofsecurityinCI,includingtheriskfrombothAI-enabledcyberthreatsandpotentialvulnerabilitiesorfailuresin
deployedAIsystems.Theintentionoftheworkshopwastofosteracandid
conversationaboutthecurrentstateofAIincriticalinfrastructure,identify
opportunitiesandrisks—particularlyrelatedtocybersecurity—presentedbyAI
adoption,andrecommendtechnicalmitigationsandpolicyoptionsformanagingtheuseofAIandmachinelearningincriticalsystems.
ThediscussionfocusedonCIintheUnitedStates,withsomelimitedconversationontheglobalregulatorylandscape.Thisreportsummarizestheworkshop’sfindingsinfourprimarysections.TheBackgroundsectioncontainsCSETresearchonthecurrentandpotentialfutureuseofAItechnologiesinvariousCIsectors.TheRisks,
Opportunities,andBarrierssectionaddressestheseissuesassociatedwithAIthatparticipantsraisedoverthecourseoftheworkshop.Thethirdsection,Observations,categorizesvariousthemesfromthediscussion,andthereportconcludeswith
Recommendations,whichareorganizedbytargetaudience(government,CIsectors,andindividualorganizationswithinboththesectorsandtheAIindustry).
CenterforSecurityandEmergingTechnology|7
Background
Inpreparationforthisworkshop,CSETresearchersexaminedthereportssubmittedbyvariousfederaldepartmentsandagenciesinresponsetotheWhiteHouseAIexecutiveorder,section4.3.ThesereportsprovidedinsightintohowsomeCIownersand
operatorsarealreadyusingAIwithintheirsector,butitwassometimesunclearwhattypesofAIsystemsCIproviderswereemployingorconsidering.Forexample,theU.S.DepartmentofEnergy(DOE)summaryreportoverviewedthepotentialforusingAI-directedorAI-assistedsystemstosupportthecontrolofenergyinfrastructure,butitdidnotspecifywhethertheseweregenerativeAIortraditionalmodels.Thiswasthecaseformanyofthesourcesandusecasesassessedforthebackgroundresearch,
spanninginformationtechnology(IT),operationaltechnology(OT),andsector-specificusecases.ThisambiguityreducesvisibilityintothecurrentstateofAIadoptionacrosstheCIsectors,limitingtheeffectivenessofecosystemmonitoringandriskassessment.
ThissectionsummarizesCSET’spreliminaryresearchfortheworkshopandprovidesexamplesofmanyofthecurrentandpotentialfutureAIusecasesinthreesectors—
financialservices,water,andenergy—basedonfederalagencyreporting.
ResearchMethodology
TheU.S.DepartmentofHomelandSecurity(DHS)recentlyreleasedguidelinesforCIownersandoperatorsthatcategorizeover150individualAIusecasesinto10
categories
.2
Whilethereportencompassedall16CIsectors,theusecaseswerenotspecified.ToidentifyAIusecasesforthesectorsthatparticipatedintheworkshop,weassessedreportsfromtheU.S.DepartmentoftheTreasury(financialservices),DOE(energy),andtheU.S.EnvironmentalProtectionAgency(EPA,water).Wealso
examinedtheAIinventoriesforeachdepartmentandagency,buttheyonlyincludedusecasesinternaltothoseorganizations,notthesectorsgenerally.
TheTreasuryandDOEreportswerewrittenfollowingtheAIexecutiveorder,were
relativelycomprehensive,andconsideredmanyAIusecases
.3
Furtherusecasesinthefinanceandenergysectorswerepulledfromnongovernmentalsources(e.g.,the
JournalofRiskandFinancialManagementandIndigoAdvisoryGroup)
.4
TheEPA
sourcesweredatedandlackeddetailsonAIusecases
.5
Toidentifymoreusecasesinthewatersector,weassessedliteraturereviewsfromWaterResourcesManagement(aforumforpublicationsonthemanagementofwaterresources)andWater(ajournalonwaterscienceandtechnology)
.6
AlthoughweprimarilyfocusedonsourcescoveringU.S.CI,someresearchencompassedCIabroad.Afulllistofsourcescanbefoundin
AppendixA.
CenterforSecurityandEmergingTechnology|8
TheCurrentandFutureUseofAIinCriticalInfrastructure
WeclassifyAIusecasesinCIintothreebroadcategories:IT,OT,andsector-specific
usecases.ITencompassestheuseofAIfor“traditional”cybersecuritytaskssuchasnetworkmonitoring,anomalydetection,andclassificationofsuspiciousemails.AllCIsectorsuseIT,andthereforetheyallhavethepotentialtouseAIinthiscategory.OTencompassesAIuseinmonitoringorcontrollingphysicalsystemsandinfrastructure,suchasindustrialcontrolsystems.Sector-specificusecasesincludetheuseofAIfordetectingfraudinthefinancialsectororforecastingpowerdemandintheenergy
sector.ThesebroadcategoriesprovideasharedframeofreferenceandcapturethebreadthofAIusecasesacrosssectors.However,theyarenotmeanttobe
comprehensiveorconveythedepthofAIuse(orlackthereof)acrossorganizationswithinsectors.
WhendiscussingusecasesforCI,weconsiderabroadspectrumofAIapplications.
WhilenewertechnologiessuchasgenerativeAI(e.g.,largelanguagemodels)have
recentlybeentopofmindformanypolicymakers,moretraditionaltypesofmachine
learningsystems,includingpredictiveAIsystemsthatforecastandidentifypatternswithindata(asopposedtogeneratingcontent),havelongbeenusedinCI.ThevariousAIsystemspresentdifferingopportunitiesandchallenges,butgenerativeAI
introducesnewissuesthatcanbemoredifficulttomanageandthatwarrantcloseexamination.Thisincludesdifficultiesininterpretinghowmodelsprocessinputs,
explainingtheiroutputs,managingunpredictablebehaviors,andidentifying
hallucinationsandfalseinformation.Evenmorerecently,generativemodelshavebeenusedtopowerAIagents,enablingthesemodelstotakemoredirectactionintherealworld.Althoughthesesystemsarestillnascent,theirpotentialtoautomatetasks—
whetherroutineworkstreamsorcyberattacks—deservesclosewatching.
ThemesinAI-CIusecasesfromthereportsexaminedinclude:
•ManyITusecasesemployAItosupplementexistingcybersecuritypracticesandhavecommonalitiesacrosssectors.Forexample,AIisoftenusedtodetect
maliciouseventsorthreatsinIT,beitatafinancialfirmorwaterfacility.SomeAIITusecases,suchasscanningsecuritylogsforanomalies,gobacktothe1990s.Othershaveemergedoverthepast20years,suchasanomalousor
maliciouseventdetection.NewpotentialusecaseshavesurfacedwiththerecentadventofgenerativeAI,suchasmitigatingcodevulnerabilitiesandanalyzingthreatactorbehavior.
CenterforSecurityandEmergingTechnology|9
•Basedonreportedusecases,therearenoexplicitexamplesofgenerativeAI
beingusedinOT.WhilesomeapplicationsoftraditionalAIarebeingused,suchasininfrastructureoperationalawareness,broaderadoptionisstillfairlylimited.ThisisinpartduetoconcernsovercausingerrorsincriticalOT.However,futureusecasesarebeingactivelyconsidered,suchasreal-timecontrolofenergy
infrastructurewithhumansintheloop.
•Manysector-specificAIusecasesseektoimprovethereliability,robustness,
andefficiencyofCI.However,theyalsoraiseconcernsaboutdataprivacy,
cybersecurity,AIsecurity,andtheneedforgovernanceframeworkstoensureresponsibleAIdeployment.Itcanbemorechallengingtoimplementacommonriskmanagementframeworkfortheseusecasesbecausetheyarespecializedandhavelimitedoverlapacrosssectors.
•AIadoptionvarieswidelyacrossCIsectors.Organizationsacrosseachsectorhavevaryingtechnicalexpertise,funding,experienceintegratingnew
technologies,regulatoryorlegalconstraints,anddataavailability.Moreover,itisnotclearwhethercertainAIusecaseswereactivelybeingimplemented,
consideredinthenearterm,orfeasibleinthelongterm.ManyofthepotentialAIusecaseshighlightedinrelevantliteraturearetheoretical,withexperimentsconductedonlyinlaboratory,controlled,orlimitedsettings.Oneexampleisaproposedintelligentirrigationsystemprototypeforefficientwaterusagein
agriculturewhichwasdevelopedusingdatacollectedfromreal-world
environments,butnottestedinthefield
.7
Thefeasibilityofimplementingtheseapplicationsinpracticeandacrossorganizationsiscurrentlyunclear.
•ThedepthofAIuseacrossorganizationswithinsectorsisdifficulttoassess.
Therearethousandsoforganizationsacrossthefinancial,energy,andwater
sectors.ItisunknownhowmanyorganizationswithinthesesectorsareusingorwilluseAI,forwhatpurposes,andhowtherisksfromthosedifferentusecases
vary.
Figure1aggregatesallAIusecasesidentifiedinthepreliminaryresearch
.*
EachsectorisdividedintoIT,OT,andsector-specificusecasesandsubdividedintocurrent/near-termandlong-termusecases.
Figure1.ExamplesofAIUseCasesinCriticalInfrastructurebySector
Source:CSET(SeeAppendixA).
+Thesourcesexaminedduringourpreliminaryresearchdidnotcontainanycurrent,near-term,orfutureexamplesofAIusecasesinfinancialsectorOT,currentornear-termexamplesofAIusecasesinwatersectorOTorIT,noranyfutureAIusecasesinenergysectorIT.
CenterforSecurityandEmergingTechnology|10
CenterforSecurityandEmergingTechnology|11
Risks,Opportunities,andBarriersAssociatedwithAI
AsevidencedbythewiderangeofcurrentandpotentialusecasesforAIincritical
infrastructure,manyworkshopparticipantsexpressedinterestinadoptingAI
technologiesintheirrespectivesectors.However,manywerealsoconcernedaboutthebroadandunchartedspectrumofrisksassociatedwithAIadoption,bothfromexternalmaliciousactorsandfrominternaldeploymentofAIsystems.CIsectorsalsofacea
varietyofbarrierstoAIadoption,evenforusecasesthatmaybeimmediately
beneficialtothem.Thissectionwillbrieflysummarizethediscussionconcerningthese
threetopics:risks,opportunities,andbarrierstoadoption.
Risks
AIriskistwofold,encompassingbothmalicioususeofAIsystemsandAIsystemvulnerabilitiesorfailures.Thissubsectionwilladdressbothofthesecategories,
startingwithrisksfrommalicioususe,whichseveralworkshopparticipantsraised
concernsaboutgiventhecurrentprevalenceofcyberattacksonU.S.critical
infrastructure.TheseconcernsincludedhowAImighthelpmaliciousactorsdiscovernewattackvectors,conductreconnaissanceandmappingofcomplexCInetworks,andmakecyberattacksmoredifficulttodetectordefendagainst.AI-poweredtoolslowerthebarriertoentryformaliciousactors,givingthemanew(andpotentiallylow-cost)waytosynthesizevastamountsofinformationtoconductcyberandphysicalsecurityattacks.However,theadditionofAIalonedoesnotnecessarilypresentanovelthreat,asCIsystemsarealreadytargetsforvariouscapableandmotivatedcyberactors
.8
MostconcernsaboutAIinthiscontextcenteredonitspotentialtoenableattacksthatmaynotcurrentlybepossibleorincreasetheseverityoffutureattacks.Amore
transformativeuseofAIbyattackerscouldinvolveseekingimprovedinsightsastowhatsystemsanddataflowstodisruptorcorrupttoachievethegreatestimpact.
GenerativeAIcapabilitiesarecurrentlyincreasingthreatstoCIprovidersincertain
cases.Thesethreatsincludeenhancedspearphishing,enabledbylargelanguage
models.Researchershaveobservedthreatactorsexploringthecapabilitiesof
generativeAIsystems,whicharenotnecessarilygame-changingbutcanbefairly
usefulacrossawiderangeoftaskssuchasscripting,reconnaissance,translation,andsocialengineering
.9
Furthermore,asAIdevelopersstrivetoimprovegenerative
models’capabilitiesbyenablingthemodeltouseexternalsoftwaretoolsandinteract
withotherdigitalsystems,digital“agents”thatcantranslategeneralhumaninstructionsintoexecutablesubtasksmaysoonbeusedforcyberoffense.
CenterforSecurityandEmergingTechnology|12
TheotherriskcategoryparticipantsidentifiedwasrelatedtoAIadoption,suchasthepotentialfordataleakage,alargercybersecurityattacksurface,andgreatersystem
complexity.Dataleakagewasasignificantconcern,regardingboththepossibilityofaCIoperator’sdatabeingstoredexternally(suchasbyanAIprovider)andthepotentialforsensitiveinformationtoaccidentallyleakduetoemployeeusageofAI(suchasbypromptinganexternallargelanguagemodel).
IncorporatingAIsystemscouldalsoincreaseaCIoperator’scybersecurityattack
surfaceinnew—orunknown—ways,especiallyiftheAIsystemisusedforeitherOTorIT.(AusecaseencompassingOTandIT,whicharetypicallystrictlyseparatedwith
firewallstolimittheriskofcompromise,wouldincreasetheattacksurfaceeven
further.)Forcertainsectors,participantspointedoutthatevenmappinganoperator’snetworkstoevaluateanAIsystem’susefulness—andsubsequentlystoringorsharingthatsensitiveinformation—couldpresentatargetformotivatedthreatactors.CI
operatorsfacemoreconstraintsthanorganizationsinotherindustriesandthereforeneedtobeextracautiousaboutdisclosinginformationabouttheirsystems.NewerAIproducts,especiallygenerativeAIsystems,mayalsofailunexpectedlybecauseitisimpossibletothoroughlytesttheentirerangeofinputstheymightreceive.
Finally,AIsystems’complexitypresentsachallengefortestingandevaluation,
especiallygiventhatsomesystemsarenotfullyexplainable(inthesenseofnotbeingabletotracetheprocessesthatleadtotherelationshipbetweeninputsandoutputs).RisksassociatedwithcomplexityarecompoundedbythefactthatthereisagenerallackofexpertiseattheintersectionofAIandcriticalinfrastructure,bothwithintheCI
communityandonthepartofAIproviders.
Opportunities
DespiteacknowledgmentoftherisksassociatedwiththeuseofAI,therewasgeneralagreementamongparticipantsthattherearemanybenefitstousingAItechnologiesincriticalinfrastructure.
AItechnologiesarealreadyinuseinseveralsectorsfortaskssuchasanomaly
detection,operationalawareness,andpredictiveanalytics.Thesearerelativelymatureusecasesthatrelyonolder,establishedformsofAIandmachinelearning(suchas
classificationsystems)ratherthannewergenerativeAItools.
OtheropportunitiesforAIadoptionacrossCIsectorsincludeissuetriageor
prioritization(suchasforfirstresponders),thefacilitationofinformationsharinginthecybersecurityorfraudcontexts,forecasting,threathunting,SecurityOperationsCenter
CenterforSecurityandEmergingTechnology|13
(SOC)operations,andpredictivemaintenanceofOTsystems.Moregenerally,
participantswereinterestedinAI’spotentialtohelpusersnavigatecomplexsituationsandhelpoperatorsprovidemoretailoredinformationtocustomersorstakeholders
withspecificneeds.
BarrierstoAdoption
Evenafterconsideringtherisk-opportunitytrade-offs,however,severalparticipantsnotedthatCIoperatorsfaceavarietyofbarriersthatcouldpreventthemfrom
adoptinganAIsystemevenwhenitmaybefullybeneficial.
SomeofthesebarrierstoadoptionarerelatedtohesitancyaroundAI-relatedrisks,
suchasdataprivacyandthepotentialbroadeningofone’scybersecurityattacksurface.SomeoperatorsareparticularlyhesitanttoadoptAIinOT(whereitmightaffect
physicalsystems)orcustomer-facingapplications.Thetrustworthiness—orlackthereof—ofAIsystemsisalsoasourceofhesitancy.
OtherbarriersareduetotheuniqueconstraintsfacedbyCIoperators.Forinstance,thefactthatsomesystemshavetobeconstantlyavailableisachallengeuniquetoCI.
Operatorsinsectorswithimportantdependencies—suchasenergy,water,and
communications—havelimitedwindowsinwhichtheycantaketheirsystemsoffline.OT-heavysectorsalsomustcontendwithadditionaltechnicalbarrierstoentry,suchasagenerallackofusefuldataorarelianceonlegacysystemsthatdonotproduce
usabledigitaloutputs.Incertaincases,itmayalsobeprohibitivelyexpensive—oreventechnicallyimpossible—toconductthoroughtestingandevaluationofAIapplicationswhencontrolofphysicalsystemsisinvolved.
Athirdcategoryofbarriersconcernscompliance,liability,andregulatoryrequirements.CIoperatorsareconcernedaboutrisksstemmingfromtheuseofuserdatainAI
modelsandtheneedtocomplywithfracturedregulatoryrequirementsacrossdifferentstatesordifferentcountries.Forexample,multinationalcorporationsinsectorssuchas
ITorcommunicationsarebeholdentothelawsofmultiplejurisdictionsandneedtoadheretoregulationssuchastheEuropeanUnion’sGeneralDataProtection
Regulation(GDPR),whichmaynotapplytomorelocalCIoperators.
Finally,asignificantbarriertoentryacrossalmostallsectorsistheneedforworkerswithAI-relevantskills.Participantsnotedthatalleviatingworkforceshortagesby
hiringnewworkersorskillingupcurrentemployeesisaprerequisiteforadoptingAIinanyrealcapacity.
CenterforSecurityandEmergingTechnology|14
Observations
Throughouttheworkshop,fourcommontrendsemergedfromthebroaderdiscussion.
Differentparticipants,eachrepresentingdifferentsectorsorgovernmentagencies,
raisedthematmultiplepointsduringtheconversation,anindicatoroftheirsaliency.
ThesetopicsincludethedisparitiesbetweenlargeandsmallCIproviders,thedifficultyindefininglinesbetweenAI-andcyber-relatedissues,thelackofclearowners
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版实习指导教师专业素养提升项目劳动合同规范3篇
- 2025版公益宣传活动宣传品制作及推广合同2篇
- 2025版住宅小区地下车库车位租赁及维护服务合同范本2篇
- 2025版木工班组智能化设备引进与应用合同4篇
- 企业对人才需求谈职业
- 2025年度个人房产维修劳务合同范本4篇
- 二零二五年度股权并购与国际化布局合同3篇
- 2025版国际贸易采购合同(原材料)3篇
- 民政局2025年度自愿离婚协议书财产分割与子女抚养协议范本4篇
- 基于2025年度需求的冷却塔设计、安装与调试服务合同2篇
- 四川省成都市武侯区2023-2024学年九年级上学期期末考试化学试题
- 教育部《中小学校园食品安全和膳食经费管理工作指引》知识培训
- 初一到初三英语单词表2182个带音标打印版
- 2024年秋季人教版七年级上册生物全册教学课件(2024年秋季新版教材)
- 2024年共青团入团积极分子考试题库(含答案)
- 碎屑岩油藏注水水质指标及分析方法
- 【S洲际酒店婚礼策划方案设计6800字(论文)】
- 铁路项目征地拆迁工作体会课件
- 医院死亡报告年终分析报告
- 中国教育史(第四版)全套教学课件
- 2023年11月英语二级笔译真题及答案(笔译实务)
评论
0/150
提交评论