生物化学教案-第二章-蛋白质的结构与功能_第1页
生物化学教案-第二章-蛋白质的结构与功能_第2页
生物化学教案-第二章-蛋白质的结构与功能_第3页
生物化学教案-第二章-蛋白质的结构与功能_第4页
生物化学教案-第二章-蛋白质的结构与功能_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1第二章蛋白质的结构与功能蛋白质概论:蛋白质是所有生物中非常重要的结构分子和功能分子,几乎所有的生命现象和生物功能都是蛋白质作用的结果,因此,蛋白质是现代生物技术,尤其是基因工程,蛋白质工程、酶工程等研究的重点和归宿点。一、蛋白质的生物学功能:1、催化生物体内的化学反应,如酶;2、调节机体内的代谢活动,如调节蛋白;3、在生物体内运输各种小分子物质,如血红蛋白;4、贮存营养物质成分,如酪蛋白;5、执行机体运动功能,如肌动蛋白;6、抵御异体物质的侵害,如抗体;7、在氧化还原反应中传递电子和质子,如细胞色素。二、蛋白质的化学组成与分类

1、元素组成:碳50%

氧23%

氮16%

氢7%

硫0-3%

微量的磷、铁、铜、碘、锌、钼凯氏定氮:蛋白质平均含氮16%,粗蛋白质含量=蛋白氮×6.25

2、氨基酸组成

从化学结构上看,蛋白质是由21种L-型α氨基酸组成的长链分子。

3、蛋白质分类

(1)、按组成:

简单蛋白:完全由氨基酸组成

结合蛋白:除蛋白外还有非蛋白成分(辅基)

(2)、按分子外形的对称程度:

球状蛋白质:分子对称,外形接近球状,溶解度好,能结晶,大多数蛋白质属此类。

纤维状蛋白质:对称性差,分子类似细棒或纤维状。

(3)、按功能分:酶、运输蛋白、营养和贮存蛋白、激素、受体蛋白、运动蛋白、结构蛋白、防御蛋白。

4、蛋白质在生物体内的分布

含量(干重):

微生物

50-80%;人体

45%;一般细胞

50%

种类:

大肠杆菌

3000种;人体

10万种;

5、蛋白质分子大小与分子量

蛋白质是由21种基本aa组成的多聚物,aa数目由几个到成百上千个,分子量从几千到几千万。一般情况下,少于50个aa的低分子量aa多聚物称为肽,寡肽或生物活性肽,有时也罕称多肽。多于50个aa的称为蛋白质。但有时也把含有一条肽链的蛋白质不严谨地称为多肽。此时,多肽一词着重于结构意义,而蛋白质原则强调了其功能意义。

蛋白质分子量=aa数目*110110为氨基酸残基平均分子量三、组成蛋白质的21(22)种氨基酸的结构和分类氨基酸的共同结构特征:所有的氨基酸在α碳原子上都含有一个羧基和氨基(脯氨酸为亚氨基),并有一个氢原子和碳原子共价连接。各种氨基酸不同之处在于和α碳原子相连的侧链(R基)结构差异。(一)氨基酸按其R基的极性分类(PH=7)1、非极性R基氨基酸:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、色氨酸、脯氨酸、甲硫氨酸;2、极性氨基酸不带电荷的极性R基(中性)氨基酸:甘氨酸、酪氨酸、丝氨酸、苏氨酸、半胱氨酸、天冬酰胺、谷氨酰胺。带负电荷的R基(酸性)氨基酸:天冬氨酸、谷氨酸带正电荷的R基(碱性)氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸;含硫氨基酸包括:半胱氨酸、蛋氨酸无旋光性氨基酸:甘氨酸;最近发现的氨基酸:硒代半胱氨酸、吡咯赖氨酸注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组;还必须记住该氨基酸的英文三字符缩写,如天冬氨酸Asp。(二)按氨基酸结构分类1、脂肪族氨基酸:酸性氨基酸(2羧基1氨基:Glu、Asp),碱性氨基酸(2氨基1羧基:Arg、Lys),中性氨基酸(氨基羧基各一:很多)2、芳香族氨基酸:含苯环:Phe、Tyr3、杂环氨基酸:His(也是碱性氨基酸)、Pro、Trp(三)按营养价值分类1、必需氨基酸:人和哺乳动物不可缺少但又不能合成的氨基酸,只能从食物中补充,共有8种:Leu、Lys、Met、Phe、Ile、Trp、Thr、Val2、半必需氨基酸:人和哺乳动物虽然能够合成,但数量远远达不到机体的需求,尤其是在胚胎发育以及婴幼儿期间,基本上也是由食物中补充,只有2种:Arg、His。有时也不分必需和半必需,统称必需氨基酸,这样就共有10种。记法:TipMTVHall3、非必需氨基酸:人和哺乳动物能够合成,能满足机体需求的氨基酸,其余11种从营养价值上看,必需氨基酸>半必需氨基酸>非必需氨基酸四、除了蛋白质氨基酸以外,还有非编码氨基酸(没有密码子)和非蛋白质氨基酸(不参与蛋白质的组成)。五、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。2、氨基酸的紫外吸收性质芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。80℃,显色慢,产物稳定;100℃,显色快,产物不稳定。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。六、肽两分子氨基酸可借助一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。肽的种类(依据氨基酸残基数目划分,联系糖类的分类)寡肽:2-10,无构象,谷胱甘肽是3肽多肽:10-50,介于之间,胰高血糖素是29肽蛋白质:50以上,有特定的构象,胰岛素是51肽多肽链中的自由氨基末端称为N端,自由羧基末端称为C端,方向从N端指向C端。人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH,氧化态为GSSG):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免于被氧化,使蛋白质或酶处于活性状态。七、蛋白质的分子结构1、维持蛋白质构象的作用力(1)氢键:连接在一电负性很强的原子上的氢原子,与另一电负性很强的原子之间形成的化学键。(2)范德华力(分子间及基团间作用力):原子之间的相互作用力。(3)疏水相互作用:蛋白质中的疏水残基避开水分子而聚集在分子内部的趋向力。(4)离子键(盐键):是正电荷和负电荷之间的一种静电作用。(5)共价健,主要的是二硫键。(6)、静电相互作用2、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。主要化学键:肽键,有些蛋白质还包含二硫键。3、蛋白质的高级结构:包括二级、三级、四级结构。1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础。可分为:α-螺旋:多肽链的主链原子沿一中心轴盘绕所形成的有规律的螺旋构象。常为右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平行。β-折叠:由若干肽段或肽链排列起来所形成的扇面状片层构象。β-转角:多肽链180°回折部分所形成的一种二级结构。无规卷曲:多肽链主链部分形成的无规律的卷曲构象。主要化学键:氢键。2)超二级结构和结构域超二级结构:由若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,彼此相互作用,形成有规则的、在空间上能够辨认的二级结构组合体。结构域(domain),又称motif(模块):在二级结构及超二级结构的基础上,多肽链进一步卷曲折叠,组装成几个相对独立、近似球形的三维实体。3)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置。主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。4)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。主要化学键:疏水键、氢键、离子键八、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。1)同源蛋白质一级结构的种属差异与生物进化

同源蛋白质:在不同的生物体内具有同一功能的蛋白质。通过比较同源蛋白质的氨基酸序列的差异可以研究不同物种间的亲源关系和进化,亲源关系越远,同源蛋白的氨基酸顺序差异就越大。如细胞色素C在生物进化领域里的应用。2)蛋白质一级结构的个体差异——分子病

分子病:基因突变引起某个功能蛋白的某个(些)氨基酸残基发生了遗传性替代从而导致整个分子的三维结构发生改变,致使其功能部分或全部丧失。

LinusPauling首先发现镰刀形红细胞贫血现是由于血红蛋白发生了遗传突变引起的,成人的血红蛋白是由两条相同的a链和两条相同的β链组成a2β2,镰刀形红细胞中,血红蛋白β链第6位的aa残基由正常的Glu变成了疏水性的Val。因此,当血红蛋白没有携带O2时就由正常的球形变成了刚性的棍棒形,病人的红细胞变成镰刀形,容易发生溶血作用(血细胞溶解)导致病血,棍棒形的血红蛋白对O2的结合力比正常的低。3)一级结构的部分切除与蛋白质的激活

一些蛋白质、酶、多肽激素在刚合成时是以无活性的前体形式(酶原)存在,只有切除部分多肽后才呈现生物活性,如血液凝固系统的血纤维蛋白原和凝血酶原,消化系统的蛋白酶原、激素前体等。尿素或盐酸胍可破坏次级键;β-巯基乙醇可破坏二硫键2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为松弛态。九、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。2、蛋白质的胶体性质与沉淀:维持蛋白质胶体稳定的主要因素电荷和水化膜。常见的蛋白质沉淀方法:a.有机溶剂沉淀,破坏水化膜。常用丙酮、乙醇等。b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。主要为二硫键和非共价键的破坏,不涉及一级结构的改变。变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。5、蛋白质的呈色反应a.茚三酮反应:经水解后产生的氨基酸可发生此反应。b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。6、水解反应:肽可以被酸、碱、酶所水解,其优劣性如下:<1>酸水解:浓酸(6N以上,N=M/价),高温(110℃以上),长时(24-36小时),污染,Trp遭到破坏,不消旋,水解彻底;<2>碱水解:浓碱(6N以上),高温(100℃以上),6小时,污染,含-OH和-SH的氨基酸均遭到破坏,Ser、Thr、Tyr、Cys,消旋,水解彻底;<3>酶水解:胰酶等,常温常压,常PH,不消旋、不破坏、不彻底。十、蛋白质的分离和纯化1、沉淀;2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。4、层析;a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。十一、、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基组成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论