初中必会几何模型(口诀突破):手拉手模型(或旋转型)_第1页
初中必会几何模型(口诀突破):手拉手模型(或旋转型)_第2页
初中必会几何模型(口诀突破):手拉手模型(或旋转型)_第3页
初中必会几何模型(口诀突破):手拉手模型(或旋转型)_第4页
初中必会几何模型(口诀突破):手拉手模型(或旋转型)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中必会几何模型(口诀突破):手拉手模型(或旋转型)教材知识:三角形全等知识中,教材对全等三角形的图形变换概括为三种:平移型、翻折型、旋转型。一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.归纳模型:三种变换中以旋转型为考试的热点和难点,这种变换我们往往也称为手拉手模型。因为这种图形变换都是以等腰三角形的顶点为旋转点,进行适当旋转而成。然后,连接对应点构造新的三角形,证明三角形全等即可解决。划重点,上口诀:等腰图形有旋转,辨清共点旋转边。关注三边旋转角,全等思考边角边。模型变换:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE=a。结论:连接BD、CE,则有△BAD≌△CAE。模型证明:图②图③同理可证。模型分析:(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形。(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型。(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现。模型实例:如图,△ADC与△EDG都为等腰直角三角形,连接AG、CE,相交于点H,问:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?问题解答:模型实练:如图,在直线AB的同一侧作△ABD和△BCE,△ABD和△BCE都是等边三角形、连接AE、CD,二者交点为H.求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论