人教版初中数学总复习第三章函数及其图象第9课时平面直角坐标系及函数的概念与图象课件_第1页
人教版初中数学总复习第三章函数及其图象第9课时平面直角坐标系及函数的概念与图象课件_第2页
人教版初中数学总复习第三章函数及其图象第9课时平面直角坐标系及函数的概念与图象课件_第3页
人教版初中数学总复习第三章函数及其图象第9课时平面直角坐标系及函数的概念与图象课件_第4页
人教版初中数学总复习第三章函数及其图象第9课时平面直角坐标系及函数的概念与图象课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第9课时平面直角坐标系及函数的概念与图象基础自主导学考点一

平面直角坐标系与点的坐标特征1.物体位置的确定一般地,在平面内确定物体的位置需要两个数据,常见的有:横坐标与纵坐标、方向与距离等.2.平面直角坐标系由平面内具有公共原点且相互垂直的两条数轴所构成的图形叫做平面直角坐标系.其中,水平的数轴叫做x轴或横轴(习惯上取向右为正方向),竖直的数轴叫做y轴或纵轴(习惯上取向上为正方向),两坐标轴的交点称为平面直角坐标系的原点.3.象限在平面直角坐标系中,x轴和y轴把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),四个象限的位置如下图:4.点的坐标的确定在平面直角坐标系中,由坐标平面内一点向x轴(或y轴)作垂线,垂足在x轴(或y轴)上的坐标叫做这个点的横坐标(或纵坐标).这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后,中间用“,”隔开).下图中点P的坐标为(-3,2).5.各象限内点的坐标特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.6.坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.考点二

特殊点的坐标特征1.对称点的坐标特征点P(x,y)关于x轴的对称点P1的坐标为(x,-y);关于y轴的对称点P2的坐标为(-x,y);关于原点的对称点P3的坐标为(-x,-y).2.与坐标轴平行的直线上点的坐标特征平行于x轴的直线上的点的坐标特征:横坐标不同,纵坐标相同;平行于y轴的直线上的点的坐标特征:横坐标相同,纵坐标不同.3.各象限角平分线上点的坐标特征第一、三象限角平分线上的点的横坐标与纵坐标相同,第二、四象限角平分线上的点的横坐标与纵坐标互为相反数.考点三

距离与点的坐标的关系1.点与原点、点与坐标轴的距离(1)点P(a,b)到x轴的距离等于点P的纵坐标的绝对值,即|b|;点P(a,b)到y轴的距离等于点P的横坐标的绝对值,即|a|.(2)点P(a,b)到原点的距离等于点P的横、纵坐标的平方和的算术平方根,即2.坐标轴上两点间的距离(1)x轴上两点P1(x1,0),P2(x2,0)间的距离|P1P2|=|x1-x2|.(2)y轴上两点Q1(0,y1),Q2(0,y2)间的距离|Q1Q2|=|y1-y2|.(3)x轴上的点P1(x1,0)与y轴上的点Q1(0,y1)之间的距离|P1Q1|=考点四

与函数有关的概念及图象1.常量和变量在一个变化过程中,数值始终不变的量叫做常量;数值发生变化的量叫做变量.2.函数的概念一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数.3.函数的表示方法函数主要的表示方法有三种:(1)解析式法;(2)列表法;(3)图象法.4.函数图象的画法(1)列表:表中给出一些自变量的值及其对应的函数值;(2)描点:在直角坐标系中,以自变量的值为横坐标,对应函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.考点五

函数自变量取值范围的确定确定自变量取值范围的方法:1.当自变量以分式形式出现,它的取值范围是使分母不为零的实数.2.当自变量以二次方根形式出现,它的取值范围是使被开方数为非负数的实数;以三次方根出现时,它的取值范围为全体实数.3.当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数.4.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.5.使实际问题有意义.规律方法探究命题点1位置的确定【例1】

如图,将正六边形ABCDEF放在平面直角坐标系中,中心与坐标原点重合,若点A的坐标为(-1,0),则点C的坐标为

.

解析:作CM⊥OD于点M,连接OC(图略).因为多边形ABCDEF是正六边形,所以OC=OA=1,∠COD=60°,命题点2平面直角坐标系内点的坐标特征【例2】

已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范围是(

)解析:(方法一)点P(a+1,2a-1)关于x轴的对称点为(a+1,-2a+1).因为点P(a+1,2a-1)关于x轴的对称点在第一象限,答案:C变式训练已知点P(x,y)的坐标满足|x|=3,=2,且xy<0,则点P的坐标是(

)A.(3,-2) B.(-3,2)C.(3,-4) D.(-3,4)答案:D命题点3距离与点的坐标的关系【例3】

如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中,点A的坐标为(2,-1),则△ABC的面积为

.

解析:由题意得出点B的坐标为(4,3),点C的坐标为(1,2).故△ABC的面积为答案:5命题点4函数的定义【例4】

下列关于变量x,y的关系式:①y=2x;②2x-3y=1;③y=|3x|;④5x-y2=1;⑤y=±x,其中y是x的函数的有(

)A.2个 B.3个C.4个 D.5个解析:根据函数的定义可知,y是x的函数的有①,②,③.对于5x-y2=1和y=±x,当x取1时,5x-y2=1中的y=±2,y=±x中的y=±1,对于一个x的值,有两个y值与其对应,因此y不是x的函数.答案:B命题点5函数图象的应用【例5】

如图,一只蚂蚁从点O出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到点O的距离为s,则s关于t的函数图象大致为(

)解析:本题是典型的数形结合问题,通过对图形的观察,可以看出s关于t的函数图象应分为三段:(1)当蚂蚁从点O到点A时,s与t成正比例函数关系;(2)当蚂蚁从点A到点B时,s不变;(3)当蚂蚁从点B回到点O时,s与t成一次函数关系,且回到点O时,s为零.答案:C命题点6函数自变量取值范围的确定【例6】

函数y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论