




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七桥问题五环数学问题由来定理讲解欧拉定理举一反三1SECTION18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。七桥问题引起了著名数学家欧拉(1707—1783)的关注。他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图2是不能一笔画出的图形。这就是说,七桥问题是无解的。这个结论是如何产生呢?请看下面的分析。2SECTION活动探究下列图形中。请找出每个图的奇点个数,偶点个数。试一试哪些可以一笔画出,请填表,从中你能发现什么规律?奇点个数偶点个数能否一笔画图一20可以图二23可以图三10可以●●ABABCDE●●●●●●A●奇点个数偶点个数能否一笔画图(5)图(6)图(7)图(8)奇点个数偶点个数能否一笔画图(9)图(10)图(11)①有奇数条边相连的点叫奇点。如:
③一笔画指:1、下笔后笔尖不能离开纸。2、每条线都只能画一次而不能重复。
问题分析问题的答案如何呢?让我们先来了解三个新概念。●●●②有偶数条边相连的点叫偶点。如:●●●如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。如果画笔经过一个n次,那么就有2n条线与该点相连结。因此,这个图形中除起点与终点外的各点,都与偶数条线相连。如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。1736年,欧拉在圣彼得堡科学院作了一次学术报告。在报告中,他证明了上述结论。后来他又给出了鉴别任一图形能否一笔画出的准则,即欧拉定理。为了介绍这个定理,我们先来看下面的预备知识:由有限条线组成的图形叫做网络,其中每条线都要求有两个不同的端点。这些线叫做网络的弧,弧的端点叫做网络的顶点。例如,图2是一个网络,a、b、c、d、e、f、g是它的7条弧,A、B、C、D是它的四个顶点。网络中互相衔结的一串弧叫做一条路。如果网络中任意两个顶点都可以用一条路连结起来,那么就称这个网络为连通的;否则称为不连通的。例如,图2是连通的网络;图3是不连通的网络,其中有的顶点(例如A与D)之间没有路线连结。总结①可以一笔画成的图形,与偶点个数无关,与奇点个数有关。也就是说,凡是图形中没有奇点的(奇点个数为0),可选任一个点做起点,且一笔画后可以回到出发点。②若奇点个数为2,可选其中一个奇点做起点,而终点一定是另一个奇点,即一笔画后不可以回到出发点。
凡是图形中有2个以上奇点的,不能完成一笔画。
3SECTION网络中以某顶点为端点的弧的条数,叫做该顶点的叉数。叉数是奇数的顶点叫做奇顶点,叉数是偶数的顶点叫做偶顶点。下面介绍欧拉定理。欧拉定理如果一个网络是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。用欧拉定理可以很方便地判断一个简单图形是否可以一笔画出。例如,图3是不连通网络,它不能一笔画出(尽管它的奇顶点个数为0);图4中实线所示图形有8个奇顶点.它不能一笔画出,如果将图中虚线补为实线,那么奇顶点只有F和G两个,所得图形就能一笔画出了(以F为起点,G为终点;或G为起点,F为终点)。4SECTION您的内容请写在这里您的内容练习
1、一辆洒水车要给某城市的街道洒水,街道地图如下:你能否设计一条洒水车洒水的路线,使洒水车不重复地走过所有的街道,再回到出发点?菜市场小广场文具店超市电器城服装城2、下图是一个公园的平面图,能不能使游人走遍每一条路不重复?入口和出口又应设在哪儿?
BACDEFG●●●●●●●
3、甲乙两个邮递员
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025秋九年级上册历史课件 第20课 第一次工业革命
- 元代文学测试题及答案
- 2024年温州中学招聘真题
- 2025年中国藤制柜面行业投资前景及策略咨询研究报告
- 2025年中国育苗钵行业投资前景及策略咨询研究报告
- 2025年中国纬密箱输出轮行业投资前景及策略咨询研究报告
- 2025年中国离心法玻璃棉管壳行业市场调查、投资前景及策略咨询报告
- 2025年中国盐渍小辣椒行业投资前景及策略咨询研究报告
- 2025年中国燃气大锅灶行业市场调查、投资前景及策略咨询报告
- 2025年中国液压切纸机行业市场调查、投资前景及策略咨询报告
- 元宇宙期刊产业政策-洞察分析
- 【MOOC】中国艺术歌曲演唱与赏析-江西财经大学 中国大学慕课MOOC答案
- 【MOOC】运输包装-暨南大学 中国大学慕课MOOC答案
- 2024ESC心房颤动管理指南解读
- 行政伦理学-终结性考核-国开(SC)-参考资料
- 清算结算效率提升
- 医院安保服务实施方案
- 广东省广州市海珠区2023-2024学年六年级下学期期末考试英语试卷
- 山西焦煤集团笔试题
- 国家专项资金管理办法
- 人工智能理论知识题库(含答案)
评论
0/150
提交评论