FEV:纯电动汽车的热管理和能量优化-2024-11-技术资料_第1页
FEV:纯电动汽车的热管理和能量优化-2024-11-技术资料_第2页
FEV:纯电动汽车的热管理和能量优化-2024-11-技术资料_第3页
FEV:纯电动汽车的热管理和能量优化-2024-11-技术资料_第4页
FEV:纯电动汽车的热管理和能量优化-2024-11-技术资料_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ThermalManagementand

EnergyOptimizationofBEVs

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

FCV

AGENDA

INTRODUCTION(MARKETTRENDS)

THERMALMANAGEMENTOVERVIEW

ENERGYCONSUMPTIONOFCLIMATESYSTEMSANDTHEIRINFLUENCEONTHEDRIVINGRANGE

BATTERYCONDITIONINGCONSIDERATIONSFORTHERMALMANAGEMENTSYSTEM

THERMALMANAGEMENTCALIBRATIONSTRATEGIESTOINCREASEENERGYEFFICIENCYSUMMARY

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

2

WeexpectanoveralllowerlevelofelectrificationintheUSthaninEurope&

China;multiplefactorscanaffecttheBEVtakerateineachofthescenariosFev

14.814.7

15%

24%

15%

10%

13%

11%

12%

17%

45%

35%

1%2%

63%

11%

10%

5%

Moderatetransformation

Salesinmillionunits

ZEVStatesICEban

180g/mi

15.215.0

42%

13%

12%

13%

20%

11%

2025203020352040

15.2

57%

11%

9%

6%

17%

2%

2%

1%

25%

4%

10%

2%

5%

88%

14%

10%

9%

15%

40%

73%

Acceleratedtransformation6)

Salesinmillionunits

ZEVStatesICEban

180g/mi

15.014.814.7

2025203020352040

LIGHTDUTY1)–POWERTRAINMARKETFORECAST

History

Salesinmillionunits

CO2fleet

emissiontarget

projection

226g/mi

14.4

14.1

13.6

74%

12.9

84%

90%

80%

8%

7%

6%

8%

5%

2%

6%

6%

3%

1%

8%

1%

3%

6%

1%

3%

2%

16.0

94%

20192020202120222023

ICEonly&Stop/Start2)MildHybrid3)FullHybrid4)Plug-inHybrid5)BatteryElectricFuelCell

1)Class1&2aincl.BEVderivatives;2)Stop/Startand12Venergymanagement;3)12Vand48Vmildhybrids;4)Includes48Vhybridswithfullhybridfunctionalities5)Includesrange-extenderelectricvehicles;6)BasedonCO2reductiontargets,definedinthe“blueprintfordecarbonizationofUStransport”Source:FEV

3

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

HybridtransmissionsexpectedtobeclusteredintoDHTforFWD

applicationsandmodular(P2)configurationsforRWDapplicationsFev

14.814.7

15%

24%

15%

10%

13%

11%

12%

17%

45%

35%

2%

1%

63%

11%

10%

5%

Moderatetransformation

Salesinmillionunits

ZEVStatesICEban

180g/mi

15.215.0

42%

13%

12%

13%

20%

11%

2025203020352040

>Regulations,governmentpolicies,andcustomeracceptancewill

drivetheoveralldegreeof

electrificationintheUSmarket

>Hybridtransmissions

−Modular(P2)configurationswillcontinuetodominateRWDHEV

−Dedicatedhybridtransmissions(DHT)willcontinuetobeimportantinFWDHEV

>EDUwillcontinuetoproliferateinthefollowingarchitectures

−BEV/FCEV

−P4hybridapplications

−Rangeextenderapplications

LIGHTDUTY1)–POWERTRAINMARKETFORECAST

Acceleratedtransformation6)

57%

11%

9%

6%

17%

4%

2%

2%

2%

1%

25%

10%

5%

14%

88%

10%

9%

15%

40%

73%

Salesinmillionunits

ZEVStatesICEban

180g/mi

15.2

15.014.814.7

2025203020352040

ICEonly&Stop/Start2)MildHybrid3)FullHybrid4)Plug-inHybrid5)BatteryElectricFuelCell

1)Class1&2aincl.BEVderivatives;2)Stop/Startand12Venergymanagement;3)12Vand48Vmildhybrids;4)Includes48Vhybridswithfullhybridfunctionalities5)Includesrange-extenderelectricvehicles;6)BasedonCO2reductiontargets,definedinthe“blueprintfordecarbonizationofUStransport”Source:FEV

4

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

FCV

AGENDA

INTRODUCTION(MARKETTRENDS)

THERMALMANAGEMENTOVERVIEW

ENERGYCONSUMPTIONOFCLIMATESYSTEMSANDTHEIRINFLUENCEONTHEDRIVINGRANGE

BATTERYCONDITIONINGCONSIDERATIONSFORTHERMALMANAGEMENTSYSTEM

THERMALMANAGEMENTCALIBRATIONSTRATEGIESTOINCREASEENERGYEFFICIENCYSUMMARY

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

5

EVs’ThermalManagementSystem(TMS)becomecritical,mainlydueto

increasedrequirementsforcoolingcapacity,thermalcomfort

IMPLICATIONSOFTMSDESIGN/INTEGRATION

THERMALMANAGEMENTSYSTEMS

AREOFTENATTHESOURCEOFCUSTOMER

COMPLAINTS

TEMPERATURENOTACHIEVED,SLOWORNON-REPEATABLECHARGINGSPEED

THEINTEGRATIONOFANEFFICIENT

THERMALMANAGEMENTSYSTEMALLOWS

UPTO20%

RANGEINCREASEINCOLDCONDITIONS

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

ULTRA-FASTCHARGEWITHAPOWER(DC)OF270-350KWREQUIRESUPTO

30-40KW

COOLINGPOWER

SEVERALSUPPLIERSANNOUNCE

~

40%LESSPIPES

INTHEOVERALLTMSINSIDEVEHICLEWITHHIGHLYINTEGRATEDSYSTEM

6

Thethermalmanagementsystemofelectricvehiclesisresponsiblefor

controllingthetemperatureofdrivecomponentsalongwiththecabin

EVTHERMALMANAGEMENT–SYSTEMOVERVIEW

FCV

HVbattery

EDU1)

Power

electronics2)

ThermalManagementSystem(TMS)

Ambientair

Cabin

Heatflow

Heatingrequired

Coolingrequired

>Avehicle’sthermalmanagementsystemhandlestheheat

flowsbetweendifferentvehiclepartsand/ortheambientair

>Inanelectricvehicle,thedrivecomponentsrequirecoolingandthevehicle’scabintemperatureneedstobecontrolled

−Battery,EDU,&powerelectronicsneedtobecooledwhen

operatingunderhigherload/athighambienttemperatures

−Atcoldambienttemperatures,batterymayrequireheatingtooperateinoptimaltemperaturewindow&athighestefficiency

>BEVthermalmgmt.systemslargelydifferfromtraditionalICEsystems,astheICEhightemperatureheatsourceis

missing

−HeatpumporPTCheatergenerateheatforcabin(orbattery)heating

−Dependingonvehicleconfiguration,wasteheatfromdrive

components,cabinorambientaircanbeusedtoheatotherparts

>OEM’sarefocusedonoptimizingthermalmanagementconsideringthedirectimpactondrivingrange

7

1)EDU=ElectricDriveUnit(e-motor,transmission&inverter);2)On-boardcharger,inverter&DC/DCconverterandpotentiallyotherelectroniccomponentsSource:FEVCTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

Therequirementsfortheelectricvehiclethermalmanagementsystemare

influencedbyexternalandvehicleperformanceconditions

FACTORSAFFECTINGTHERMALMANAGEMENTSYSTEM

FCV

PARTIALLIST

EXTERNAL

CONDITIONS

ATMOSPHERICCONDITIONS

USESCENARIO/CONDITIONS

VEHICLE

PERFORMANCE

CONDITIONS

DISCHARGINGPOWEROUTPUT

CABIN

REQUIREMENT

EFFICIENCYOF

TECH.USED

CHARGINGPOWER

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

8

Hardwareselectiontogetherwithcontrolsdevelopmentandoptimizationarekeyto

maximizingsystemefficiencywhileconsideringpassengercomfort

SIMULATION&TESTINGMETHODOLOGY-THERMALSYSTEMFUNCTIONDEVELOPMENT

FCV

Heatpumpintegration

Activegrillshutter

Batteryconditioning

Powertraincooling

Thermal

efficiency

Cabincomfort

Wasteheatintegration

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>Functiondevelopmentfor:

−Powertrain

e.g.fan,pump,valvecontrol

−Cabincompartment

e.g.compressor,HV-PTC,blowercontrol

−Tractionbattery

e.g.compressor,HV-Heater,pump,valvecontrol

>Requirementspecification>Interfacedefinition

>Softwaredevelopment

>Calibration(SiL,MiL,HiL)andsystemvalidation

9

FollowingtheV-modelprovidesasystemsapproachtothethermal

FCV

managementprocesstoarriveatoptimalperformance

THERMALMANAGEMENTDEVELOPMENTPROCESS

RequirementAnalysis

Systemsign-off

FCVDevelopmentProcess

ConceptDesign

ThermalManagement

VehicleTesting

1DSimulation

ComponentTesting

3DSimulation

Concept

Implementation

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

10

FCV

AGENDA

INTRODUCTION(MARKETTRENDS)THERMALMANAGEMENTOVERVIEW

ENERGYCONSUMPTIONOFCLIMATESYSTEMSANDTHEIRINFLUENCEONTHEDRIVINGRANGE

BATTERYCONDITIONINGCONSIDERATIONSFORTHERMALMANAGEMENTSYSTEM

THERMALMANAGEMENTCALIBRATIONSTRATEGIESTOINCREASEENERGYEFFICIENCYSUMMARY

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

11

Asregulationschange,testproceduresandoptimizationfocusneedto

adaptaccordinglytoaligneffortsforpotentialrangeimprovements

Testeffort

Higherofficialrangecanbe

achievedbyprovingefficient

vehiclesystemsvia

additionaloptionaltests1)

gAggressiveUS06Cycle

Hot35。CSC03Cycle

Cold-7。CUDDSCycle

HighwayHFEDScycle

CityUDDScycle

Regionalregulationsdefineprocedurescontainingmultipledrivecycles

includingoptionaltests

VEHICLERANGEDETERMINATION-THERMALMANAGEMENTANDINFLUENCEOF5-CYCLETEST

FCV

Drivingrangeis

primaryconsumerrequirementforBEVs

OptionaltestsMandatorytests

Labelrange

increase

Optionalbenefit

1)BasedonUSEPAapplicationdata

12

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

Fullunderstandingofoptionaltestconditionsiskeytodeterminingif

benefitsinrangearepossibleviaimprovedadjustmentfactor

FCV

SEQUENCES

SAEJ1634TEST–COLDCO&SC03

ColdCO

>Coldstarttestafterminimum12-hoursoakat-7°C>Chargingisnotpermittedduringthesoakperiodto

ensurebatterybeginstestatsoaktemperature>Defrostnotrequired,Recirculatenotallowed

>Utilizescolddynocoefficientsderivedatsame

temperatureastest

>TestcycleconsistsofrepeatedUDDScyclesat-7°C>Mandatory10-minutesoakafterfirstUDDS

>StartingforMY2025,onlytwoUDDSwillbeusedfor

rangedetermination

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

SC03

>35.0±3.0°Ccelltemperaturewithnorequiredminimumsoak

>Solarloadingprovidedondynoat850±45W/m2>Variablespeedcoolingfantobeusedfollowing

40CFR§86.161-00

>10±1minutekey-offsoakbeforeSC03

>A/CTemperaturesettingatfullcool(forautomaticsystemssetat72°F)

>Windowsclosed,fanspeedsettomax

−(clarifiedbyEPAinCD-2023-06fromJuly5,2023)

13

Dedicatedchassisdynamometertestingisneededtooptimizethe

calibrationthermalmanagementandenergyflowtomaximizeEVrange

VEHICLEDEVELOPMENTCENTER(VDC)

FCV

Dimensions

>2axleswith48”diametereach>FWD,RWDandAWDcapable

>Max.speed:200km/h(124mph)

>Wheelbase:1800mmto4400mm(71”to173”)

>Trackwidth:800mm(inner)to2330mm(outer)

>Max.weight:2500kg(5500lbs)peraxle>Max.Power:155kW(207HP)2WD

270kW(362HP)4WD

>12ft.highx14ft.widedynoentrancedoors

EmissionDriveCycles

>Alldrivecyclescanbeprogrammed(e.g.,FTP75,HWFE,US06,ColdCO,SC03,NEDC,WLTP,RDEwithgradesimulation,customerspecific,etc.)

Temperature

>-20°Cto+40°C(-4°Fto+104°F)

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

14

InthisCaseStudy,theimpactofthethermalsystemisclearlyevidentwith

~5.5%inoverallconsumption(~2.8%ofwhichcomesfromtheblower)

TOTALENERGYCONSUMPTIONDURINGSC03CYCLE,A/CCOMPRESSORANDDC/DC(LOWVOLTAGE)ENERGY

FCV

-5.46%

-2.81%

1.830

1.780

1.730

0.1300.132

0.1040.0910.086

TotalBatteryEnergyA/CCompressorEnergyDC/DCEnergy

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>~5.5%ofSC03drivecycleenergyconsumptionrelatedtoA/C

usage

>~2.8%oftotalenergy

consumptiondifferencebetweenmax.blowersetting(asrequiredbyEPA)and‘auto’setting

−EPAstatestheadjustmentfactor

takesthisintoaccountandhencerequiresmax.blowerforthe

regulateddrivecycle

mMax.blowersettingmAutoblowersettingA/Coff

15

Impactofcabintemperaturesettingonenergyconsumptionisclearly

evidentwith~7%additionalconsumptionfor-2。Frequestedtemperature

A/CCOMPRESSORPOWERWITHHVACSETTOAUTOATDIFFERENTTARGETTEMPERATURES(BLOWERONMAX.)

FCV

+6.67%+7.62%

1.1201.130

1.050

A/Ccompressorpower(kWh)

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>EnergyconsumptionincreaseswithlowersettemperaturesoftheHVACsystem(asexpected)

−Ambienttemperatureandsolarloadingconstant

−HVblowerspeedsettingconstant

72F70F68F

16

Back-to-backUDDScyclesduringColdCOshowsignificantimpactofHVAC

forfirstfewcyclesvsremaining;improvementfromheatpumpalsoevident

HVACSETTO72FAUTO,ENERGYCONSUMPTIONBEHAVIORVSCYCLENUMBER

FCV

EnergyConsumptionperUDDSinColdCO

8000

7000

6000

5000

4000

3000

2000

1000

Wh

0

12345678910

UDDSNumber

VehicleAVehicleBVehicleC

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>HighestenergyconsumptionduringfirstUDDS

−Drivenbyenergyrequiredfor

propulsionsystemandpassengercabinwarmup

>EnergyperUDDScyclestabilizesbetween2ndto10thUDDS

(dependingonvehicle)

>Highvariationofenergyisnotedbetweenvehicles

−HVACconsumptionforVehiclesA&BhigherthanVehicleC

−VehicleCisequippedwithaheatpump(insteadofPTCheater)

17

Rangebasedon2024regulations(10xUDDS,customAF)comparedto2025

(2xUDDS,standardAF)showsanimpactof4milesinrange

HVACSETTO72FAUTO,ENERGYCONSUMPTIONFOR2AND10UDDS

FCV

2024:

10UDDSusedforColdCOtesting

2025:

First2UDDSusedforColdCOtesting

Efficiency&Range

Efficiency&Range

City

Highway

Combined

City

Highway

Combined

488mi

464mi

477mi

488mi

464mi

477mi

193Wh/mi

203Wh/mi

197Wh/mi

193Wh/mi

203Wh/mi

197Wh/mi

AdjustedRange-Standard0.7AdjustmentFactor

AdjustedRange-Standard0.7AdjustmentFactor

334miles

334miles

AdjustedRange-ManufacturerAdjustmentFactor

AdjustedRange-ManufacturerAdjustmentFactor

338miles

334miles

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>Nodifferencebetweenreportedcityandhighwayresults

−Basedon2cycleresults

>Individualadjustmentfactorabove0.7whenusingfirst10UDDS

−Individualfactorresultsin4milesofadditionalrange

>2UDDSresultsinadjustmentfactorof0.7andassociatedrangereductionof4miles

18

Energyconsumptionincreasesastemperaturedecreasesdrivenby

passengercomfort(cabinheating)

HVACSETTO72FAUTO,ENERGYCONSUMPTIONFOR2AND10UDDS,VEHICLEC(INCLUDINGHEATPUMP)

FCV

+2.81%

+2.71%

0°C(-7°C)(-20°C)

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>Energyconsumptionincreasesastemperaturedecreases

>Higherconsumptiondrivenbycabinheating

−Heatpumpscanbecomelessefficientatextremecold

temperatures

OverallEnergyHeatEnergy

19

Detailedenergyflowanalysiscanidentifyhighconsumersanddrawfocus

onareasthatcanbenefitfromcalibrationorotheroptimization

ENERGYFLOWAT0°C

FCV

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>Sankeydiagramisonemeanstovisualizetheenergyflow

20

Detailedenergyflowanalysiscanidentifyhighconsumersanddrawfocus

onareasthatcanbenefitfromcalibrationorotheroptimization

ENERGYFLOWAT0°CCOMPAREDTO-20°C

FCV

>Sankeydiagramisonemeanstovisualizetheenergyflow

>Higherusagesprimarilyfrom

−1:Heatpumpoperation(~9kWh)

−2:Batteryconditioning(~1kWh)

−3:Drivelinelosses(~2kWh)

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

21

Abatteryelectricvehicle’sdrivingrangecanbereducedupto40%for

extremeambienttemperaturesduetothermalmanagementneeds

AMBIENTTEMPERATUREIMPACTONRANGE

FCV

Vehiclerange[%]

0

20

40

60

80

100

»INDICATIVE

max.

evable

ge

max.

evable

<60%of

rangeachi

Maximumdrivingran

<70%of

rangeachi

Compressor&fansclosetomaximum

power

Lowheating/

coolingpower,

primarilyair

ventilation

Heatingload

Coolingload

PTCheaterand/or

heatpump&other

heating

componentsat

max.power

-20-10010203040

Ambienttemperature[。C]

1)Lossescanalsobesignificantlyhigher,“normal”conditions&typicaldrivecycleassumed

Note:Indicativeforstate-of-the-artBEV,butheatingandcoolingloadsstronglydependingonvehicleandoperatingconditionsSource:FEV

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>HVACenergyconsumptionandthusBEVdrivingrangelargelydependsonambienttemperature

>Consumptionaround20。Cislowest,aslimitedheating/coolingisrequired

−HVACmightstillbeusedtomaintainairqualitythroughventilationanddehumidification

>Heatingloadstronglyincreasingatnegativetemperatures,maximumrangelossof~40%1)

−PTCheaterorpotentiallyheatpumpclosetomax.power

−Additionalheatingcomponentsrunning(e.g.heatedseats)

−Initialheatingofbatteryrequired(orbatteryoperatinginunfavorableconditions)

>Peakcoolingloadsslightlysmallerthanfor

heat,butcanstillaccountfor~30%rangeloss1)

22

FCV

AGENDA

INTRODUCTION(MARKETTRENDS)THERMALMANAGEMENTOVERVIEW

ENERGYCONSUMPTIONOFCLIMATESYSTEMSANDTHEIRINFLUENCEONTHEDRIVINGRANGE

BATTERYCONDITIONINGCONSIDERATIONSFORTHERMALMANAGEMENTSYSTEM

THERMALMANAGEMENTCALIBRATIONSTRATEGIESTOINCREASEENERGYEFFICIENCYSUMMARY

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

23

Batteryconditioningrequirements(andassociatedTMScalibration)can

haveasignificantimpactonrange

FCV

>Batterieshaveaverysmalltemperaturewindowofoptimaloperation

−Thermalmanagementiskeyforlongevityandperformanceofbatterypacks>Fastchargingisnotpossibleoutsideoptimaltemperaturerange

>Batteriesuseactivecoolingmechanismsduringchargingtoavoid

overheatingordamagetobattery

>Batteryandvehiclecabincanbeconditionedwithenergyfromthecharger

−Vehiclecabinisattargettemperatureatbeginningofthetrip

−Potentialofpre-conditioningisconsideredinJ1634(2021);thisstandardallowsoptionofpre-conditioningforColdCOandSC03testing(currentlynotincludedinexisting

EPAregulation)

>HVACandthermalmanagementsystemcanpre-heatbatterywhiledriving(e.g.whendestinationisfastcharger)

−Balancebetweenremainingdrivingrangeandenergyneededforconditioningrequirescalibration

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

24

ElectricDriveUnit(EDU)heatgenerationcanbeusedforbatterythermal

conditioning

Power[kW]

Temperature[。C]

14

12

10

8

6

4

2

0

Batt

eryPower

·······Fron

tHeatPower、

·······Rear

HeatPower

·······Syst

emHeatPower

350

300

250

200

150

100

50

0

60

50

40

30

20

10

0

-10

BatteryC

ellTemp.

——EndWind

ingTemp

——BatteryC——HVBatte

oolant-inTempyCurrent

r

VEHICLEISSTARTEDAFTERCOLDSOAKANDVEHICLEREMAINEDINPARK

FCV

>BothfrontandrearEDUsshowhigh

currentflow,althoughvehicleremainsatstandstill

Current[A]

>Convertertopologyallows400V

nominalbatteryvoltagetooperateatlowervoltageandconsequentlyboostthebatterycurrenttogenerateheatinthemotor

>Twophaseexcitationisusedtomaketherotorlockintomagmaticnorthwithnotorquegenerated

0120240360480600

time[s]

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

25

FCV

AGENDA

INTRODUCTION(MARKETTRENDS)THERMALMANAGEMENTOVERVIEW

ENERGYCONSUMPTIONOFCLIMATESYSTEMSANDTHEIRINFLUENCEONTHEDRIVINGRANGEBATTERYCONDITIONINGCONSIDERATIONSFORTHERMALMANAGEMENTSYSTEM

THERMALMANAGEMENTCALIBRATIONSTRATEGIESTOINCREASEENERGYEFFICIENCY

SUMMARY

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

26

Vehiclecontrols&calibrationcomplexityhaveincreasedsignificantlydue

totopologytrends(e.g.,numberofmachines,gearratios,etc.)

VEHICLECONTROLFUNCTIONANDCALIBRATIONDEVELOPMENT

FCV

20002010201520202025

Calibrationtaskswith

directconnectionto

Driver

PedalInputthermalmanagement

StabilityControls

Battery

Thermal

Management

PredictiveStrategies

Conditioning

ADAS/ADFeatures

Driver

PedalInput

Regenerative

Braking

CloudIntegration&Services

Multiple

ElectricMotors

Stability

Controls

Disconnects

Electric

Accessories

HighPower&

Bi-Directional

Charging

?

Howarethesecomponentsandcontrollerswiththeirindividualoperationandsafetyaspectstobecoordinatedandcalibrated?

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

27

EDUefficiencyisimpactedbytemperature;suchimpactsneedtobe

consideredduringvehiclecalibrationtooptimizeoverallsystemefficiency

LOADEDEFFICIENCYMAP–DIFFERENCEBETWEENWARMANDCOLDOPERATINGTEMPERATURE

BaselineFluid80°C-minus40°CEfficiencymap

8500

8000

7500

7000

6500

5000

4500

4000

3500

3000

2500

2000

1500

50100150200

250

300

350

MotorSpeed[rpm]

500

0

60005500

1000

MotorTorque[Nm]

CTISymposiumUSA15-16May2024,TomD'Anna,FEVNorthAmerica,Inc.

>EfficiencyoftheEDUdependsonoperatingtemperature

−Variouslosscontributors(churning,meshing,electricmotor,etc.),impactlossesatgivenoperatingpointseachwithtemperatureinfluences

>Thermalmanagementtogetherwithconsiderationofoperatingpointsrelativetocomponent

efficiencycanenhancecalibration

XUDDSHWFT

HigherefficiencyatLowerefficiencyat

80°C80°C

28

Calibrationofkeysystems(e.g.,lowvoltageconsumers,TMS,regen,charge

system)enabledarangeincreaseof15%alongwithMPGelabelimprovement

MCTTESTING,DYNAMICPART1&2

Current[A]

CoolantFlow[l/min]

Speed[k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论