上海曹杨二中2025届数学高一上期末学业质量监测模拟试题含解析_第1页
上海曹杨二中2025届数学高一上期末学业质量监测模拟试题含解析_第2页
上海曹杨二中2025届数学高一上期末学业质量监测模拟试题含解析_第3页
上海曹杨二中2025届数学高一上期末学业质量监测模拟试题含解析_第4页
上海曹杨二中2025届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海曹杨二中2025届数学高一上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A①和② B.②和③C.③和④ D.②和④2.不论a取何正实数,函数恒过点()A. B.C. D.3.若a>b,则下列各式正确的是()A. B.C. D.4.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.5.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.6.两圆和的位置关系是A.内切 B.外离C.外切 D.相交7.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.8.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则9.已知,,三点,点使直线,且,则点D的坐标是(

)A. B.C. D.10.已知函数,若在上单调递增,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.12.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________13.______.14.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.15.已知,则用表示______________;16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(直角三角形三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上(含线段两端点),已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.18.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.19.已知函数的部分图象如图所示.(1)求的解析式;(2)把图象上所有点的横坐标缩小到原来的,再向左平移个单位长度,向下平移1个单位长度,得到的图象,求的单调区间.20.已知向量、、是同一平面内的三个向量,且.(1)若,且,求;(2)若,且与互相垂直,求.21.已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题2、A【解析】令指数为0,即可求得函数恒过点【详解】令x+1=0,可得x=-1,则∴不论取何正实数,函数恒过点(-1,-1)故选A【点睛】本题考查指数函数的性质,考查函数恒过定点,属于基础题3、A【解析】由不等式的基本性质,逐一检验即可【详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【点睛】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.4、D【解析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D5、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.6、D【解析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【点睛】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.7、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.8、B【解析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.9、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.10、C【解析】利用分段函数的单调性列出不等式组,可得实数的取值范围【详解】在上单调递增,则解得故选:C【点睛】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:12、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.13、【解析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可.【详解】,根据十进制化为二进制“倒序取余法”如下:可得.故答案为:【点睛】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题.14、【解析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.15、【解析】根据对数的运算性质,对已知条件和目标问题进行化简,即可求解.【详解】因为,故可得,解得..故答案:.【点睛】本题考查对数的运算性质,属基础题.16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)或时,L取得最大值为米【解析】(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.同时也可求得值【小问1详解】由题意可得,,,由于,,所以,,,即,【小问2详解】设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米18、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.19、(1)(2)单调递减区间为,单调递增区间为【解析】(1)根据最值求的值;根据周期求的值;把点代入求的值.(2)首先根据图象的变换求出的解析式,然后利用整体代入的方法即可求出的单调区间.【小问1详解】由图可知,所以,.又,所以,因为,所以.因为,所以,即,又|,得,所以.【小问2详解】由题意得,由,得,故的单调递减区间为,由,得,故的单调递增区间为.20、(1)或(2),【解析】(1)先设,根据题意有求解.(2)根据,,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论