版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西韩城象山中学2025届数学高二上期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导数为,且满足,则()A. B.C. D.2.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.53.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.4.在等比数列中,,,则等于()A. B.5C. D.95.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.6.不等式的解集为()A. B.C. D.7.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为8.双曲线的渐近线方程和离心率分别是A. B.C. D.9.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.10.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.2611.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.1412.已知正项等比数列的前项和为,且,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在空间直角坐标系中,向量为平面ABC的一个法向量,其中,,则向量的坐标为______14.已知平面的法向量为,平面的法向量为,若,则___________.15.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______16.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长18.(12分)已知函数(1)讨论函数的单调性;(2)若,证明:19.(12分)设点是抛物线上异于原点O的一点,过点P作斜率为、的两条直线分别交于、两点(P、A、B三点互不相同)(1)已知点,求的最小值;(2)若,直线AB的斜率是,求的值;(3)若,当时,B点的纵坐标的取值范围20.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和21.(12分)求下列函数的导数:(1);(2).22.(10分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先求出,再令即可求解.【详解】由,则,令,则,所以.故选:C【点睛】本题主要考查了基本初等函数的导数以及导数的基本运算法则,属于基础题.2、A【解析】由双曲线的定义及三角形的几何性质可求解.【详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A3、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C4、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D5、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.6、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.7、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.8、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解9、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解10、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A11、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.12、B【解析】设等比数列的公比为,则,由可得,可得出,利用基本不等式可求得结果.【详解】设等比数列的公比为,则,因为,则,所以,,则,当且仅当时,等号成立.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据向量为平面ABC的一个法向量,由求解.【详解】因为,,所以,又因为向量为平面ABC的一个法向量,所以,解得,所以,故答案为:14、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:215、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题16、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)建立空间直角坐标系,利用向量法求得直线与所成角的余弦值.(2)结合直线与平面所成的角,利用向量法列方程,化简求得的长.【小问1详解】依题意点在平面ABC上的射影为线段AC的中点D,所以平面,,由于,所以,以为空间坐标原点建立如图所示空间直角坐标系,,,当是等边三角形时,,.设直线与所成角为,则.【小问2详解】设,则,,设平面的法向量为,则,故可设,设直线与平面所成角为,则,化简的,解得或,也即或.18、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;(2)见详解【解析】(1)对函数进行求导,然后根据参数进行分类讨论;(2)构造函数,求函数的最小值即可证出.【详解】(1)的定义域为,.当时,在上恒成立,所以在上单调递增;当时,时,;时,,所以在上单调递减,在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)当时,.令,,则.,令,.恒成立,所以在上单调递增.因为,,所以存在唯一的,使得,即.①当时,,即,所以在上单调递减;当时,,即,所以在上单调递增.所以,,②方法一:把①代入②得,.设,.则恒成立,所以在上单调递减,所以.因为,所以,即,所以,所以时,.方法二:设,.则,所以在上单调递增,所以,所以.因为,所以,所以,所以时,.【点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等式的方法主要有两个:(1)不等式两边作差构造函数,利用导数研究函数的单调性,求出函数最值即可;(2)观察不等式的特点,结合已解答问题把要证的不等式变形,并运用已证结论先行放缩,再化简或者进一步利用导数证明.19、(1);(2)3;(3);【解析】(1)根据两点之间的距离公式,结合点坐标满足抛物线,构造关于的函数关系,求其最值即可;(2)根据题意,求得点的坐标,设出的直线方程,联立抛物线方程,利用韦达定理求得点坐标,同理求得点坐标,再利用斜率计算公式求得即可;(3)根据题意,求得点的坐标,利用坐标转化,求得关于的一元二次方程,利用其有两个不相等的实数根,即可求得的取值范围.【小问1详解】因为点在抛物线上,故可得,又,当且仅当时,取得最小值.故的最小值为.【小问2详解】当时,故可得,即点的坐标为;则的直线方程为:,联立抛物线方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故为定值.【小问3详解】当时,可得,此时,因为两点在抛物线上,故可得,,因为,故可得,整理得:,,因为三点不同,故可得,则,即,,此方程可以理解为关于的一元二次方程,因为,故该方程有两个不相等的实数根,,即,故,则,解得或.故点纵坐标的取值范围为.【点睛】本题考察直线与抛物线相交时范围问题,定值问题,解决问题的关键是合理且充分的利用韦达定理,本题计算量较大,属综合困难题.20、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.21、(1);(2).【解析】(1)根据导数的加法运算法则,结合常见函数的导数进行求解即可;(2)根据导数的加法和乘法的运算法则,结合常见函数的导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度商业咨询合同
- 2024年阿维塔品牌传播方案(品牌前策)
- 2024年度特制沙子生产与销售合同
- 2024年度版权买卖合同标的及买卖价格
- 2024年度物联网传感器采购与安装合同
- 天津市红桥区2024-2025学年高一上学期期中考试政治试卷(含答案)
- 2024年保密教育培训
- 2024年度物流运输服务与货物采购合同
- 04版大米销售合同:大米销售与售后服务协议
- 2024年度幼儿园卫生保健服务合同
- 网络安全防护策略与指南
- 农产品溯源体系构建
- 2024全新物业服务培训
- 装饰图案(第2版)课件 李健婷 模块7、8 装饰图案的组织形式装饰图案在现代设计中的应用
- 企业宣传视频拍摄制作方案
- 2024年初中信息科技测试题及答案1
- 2024陕西省西安国际港务区定向招聘历年高频难、易错点500题模拟试题附带答案详解
- 脑出血课件完整版本
- 2024年杭州市房产交易产权登记管理中心招考高频难、易错点500题模拟试题附带答案详解
- 人教版一年级数学上册《第一、二单元测试卷》(附答案)
- 《深度学习入门-基于Python的实现》 课件全套 吴喜之 1-9 从最简单的神经网络说起- -TensorFlow 案例
评论
0/150
提交评论