2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题含解析_第1页
2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题含解析_第2页
2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题含解析_第3页
2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题含解析_第4页
2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省朝阳市凌源市联合校高二数学第一学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.52.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.3.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.4.抛物线的准线方程是()A. B.C. D.5.已知,,则下列结论一定成立的是()A. B.C. D.6.函数在和处的导数的大小关系是()A. B.C. D.不能确定7.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面8.执行如图所示的程序框图,输出的结果为()A.4 B.9C.23 D.649.双曲线的左焦点到其渐近线的距离是()A. B.C. D.10.设是公差的等差数列,如果,那么()A. B.C. D.11.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.1412.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校有高一学生人,高二学生人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为的样本,已知从高一学生中抽取人,则________14.点为双曲线上一点,为焦点,如果则双曲线的离心率为___________.15.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______16.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方形与梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,为的中点(1)求证:平面平面;(2)求二面角的正切值18.(12分)(1)已知:函数有零点;:所有的非负整数都是自然数.若为假,求实数的取值范围;(2)已知:;:.若是的必要不充分条件,求实数的取值范围.19.(12分)新疆长绒棉品质优良,纤维柔长,被世人誉为“棉中极品”,产于我国新疆的吐鲁番盆地、塔里木盆地的阿克苏、喀什等地.棉花的纤维长度是评价棉花质量的重要指标之一,在新疆某地区成熟的长绒棉中随机抽测了一批棉花的纤维长度(单位:mm),将样本数据制成频率分布直方图如下:(1)求的值;(2)估计该样本数据的平均数(同一组中的数据用该组数据区间的中点值为代表);(3)根据棉花纤维长度将棉花等级划分如下:纤维长度小于30mm大于等于30mm,小于40mm大于等于40mm等级二等品一等品特等品从该地区成熟的棉花中随机抽测两根棉花的纤维长度,用样本的频率估计概率,求至少有一根棉花纤维长度达到特等品的概率.20.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?21.(12分)经观测,某种昆虫的产卵数y与温度x有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.275731.121.71502368.3630表中,(1)根据散点图判断,与哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.试求y关于x回归方程.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.22.(10分)已知等差数列满足:,.(1)求数列的通项公式;(2)若数列满足:,,求数列的通项公式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C2、B【解析】根据代入计算化简即可.【详解】故选:B.3、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B4、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.5、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.6、A【解析】求出函数导数即可比较.【详解】,,所以,即.故选:A.7、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D8、C【解析】直接按程序框图运行即可求出结果.【详解】初始化数值,,第一次执行循环体,,,1≥4不成立;第二次执行循环体,,,2≥4不成立;第三次执行循环体,,,3≥4不成立;第四次执行循环体,,,4≥4成立;输出故选:C9、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A10、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.11、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C12、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据分层抽样的等比例性质列方程,即可样本容量n.【详解】由分层抽样的性质知:,可得.故答案为:14、【解析】利用双曲线的定义、离心率的计算公式、两角和差的正弦公式即可得出.【详解】由可得,根据双曲线的定义可得:,.故答案为:15、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.16、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)证明BC⊥平面BDE即可;(2)以D为原点,DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小问1详解】∵ADEF为正方形∴ED⊥AD又∵正方形ADEF与梯形ABCD所在的平面互相垂直,且ED⊂平面ADEF∴ED⊥平面ABCD∵BC⊂平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,则,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE与BD平面BDE,∴BC⊥平面BDE又∵BC⊂平面BEC∴平面BDE⊥平面BEC;【小问2详解】由(1)知ED⊥平面ABCD∵CD平面ABCD,∴CD⊥ED,∴DA,DC,DE三线两两垂直,故以D为原点,DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系D-xyz:则,则设为平面BDM的法向量,则,取,取平面BCD的法向量为,设二面角的大小为θ,则,∴.18、(1);(2).【解析】(1)易知为真命题,根据且命题的真假可知为假命题,结合函数零点与对应方程的根之间的关系得出,解不等式即可;(2)根据一元二次不等式的解法可得和,结合必要不充分条件的概念可得,利用集合与集合之间的关系即可得出答案.【详解】解:(1)对于:所有的非负整数都是自然数,显然正确.因为为假,所以为假.所以“函数没有零点”为真,所以,解得.所以实数的取值范围是.(2)对于:,解得或.对于,不等式的解集为,因为是的必要不充分条件,所以所以或,所以或,所以实数的取值范围是.19、(1)(2)(3)【解析】(1)由频率分布直方图中所有矩形的面积之和为1,可求出答案.(2)根据平均数的公式可得到答案.(3)先求出一根棉花纤维长度达到特等品的概率,然后分恰好有一根和两根棉花小问1详解】由解得【小问2详解】该样本数据的平均数为:【小问3详解】由题意一根棉花纤维长度达到特等品的概率为:两根棉花中至少有一根棉花纤维长度达到特等品的概率20、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.21、(1)(2)【解析】(1)根据散点图看出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论