2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题含解析_第1页
2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题含解析_第2页
2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题含解析_第3页
2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题含解析_第4页
2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省西北农林科技大学附属中学数学高一上期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)2.在中,下列关系恒成立的是A. B.C. D.3.设P为函数图象上一点,O为坐标原点,则的最小值为()A.2 B.C. D.4.若圆上至少有三个不同的点到直线的距离为,则的取值范围是()A. B.C. D.5.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.6.已知角的终边过点,若,则A.-10 B.10C. D.7.设,,,则的大小顺序是A. B.C. D.8.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.9.已知函数的上单调递减,则的取值范围是()A. B.C. D.10.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则函数零点的个数为_________12.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.13.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)14.直线与圆相交于A,B两点,则线段AB的长为__________15.函数的反函数为___________16.已知不等式的解集是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期;(2)求函数的对称轴和对称中心;(3)若,,求的值18.已知,且(1)求的值;(2)求的值.19.设函数f(x)=(x>0)(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求+的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围20.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)21.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A2、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题3、D【解析】根据已知条件,结合两点之间的距离公式,以及基本不等式的公式,即可求解【详解】为函数的图象上一点,可设,,当且仅当,即时,等号成立故的最小值为故选:4、D【解析】先整理圆的方程为可得圆心和半径,再转化问题为圆心到直线的距离小于等于,进而求解即可【详解】由题,圆标准方程为,所以圆心为,半径,因为圆上至少有三个不同点到直线的距离为,所以,所以圆心到直线的距离小于等于,即,解得,故选:D【点睛】本题考查直线与圆的位置关系的应用,考查圆的一般方程到圆的标准方程的转化,考查数形结合思想5、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.6、A【解析】因为角的终边过点,所以,得,故选A.7、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.8、D【解析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题9、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题10、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.12、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:13、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)14、【解析】算出弦心距后可计算弦长【详解】圆的标准方程为:,圆心到直线的距离为,所以,填【点睛】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算15、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.16、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),;(3)【解析】(1)利用三角函数的恒等变换,对函数的表达式进行化简,进而可以求出周期;(2)利用正弦函数对称轴与对称中心的性质,可以求出函数的对称轴和对称中心;(3)利用题中给的关系式可以求出和,然后将展开求值即可【详解】(1).所以函数的最小正周期.(2)由于,令,,得,故函数的对称轴为.令,,得,故函数的对称中心为.(3)因为,所以,即,因为,所以,则,,所以.【点睛】本题考查了三角函数的恒等变换,三角函数的周期、对称轴、对称中心,及利用函数的关系式求值,属于中档题18、(1)7(2)【解析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的余弦公式,结合平方关系化弦为切计算即可得解.【小问1详解】解:由已知得,或,∴或,又∵,∴或,又∵,∴,∴,∴;【小问2详解】解:.19、(1)见解析;(2)2;(3)见解析.【解析】(1)将函数写成分段函数,先作出函,再将x轴下方部分翻折到轴上方即可得到函数图象;(2)根据函数的图象,可知在上是减函数,而在上是增函数,利用b且,即可求得的值;(3)构造函数,由函数的图象可得结论【详解】(1)如图所示(2)∵f(x)==故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+=2.(3)由函数f(x)的图象可知,当0<m<1时,函数f(x)的图象与直线y=m有两个不同的交点,即方程f(x)=m有两个不相等的正根.【点睛】本题考查绝对值函数,考查数形结合的数学思想,考查学生的作图能力,正确作图是关键20、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论