江苏省南京市2025届高一上数学期末考试试题含解析_第1页
江苏省南京市2025届高一上数学期末考试试题含解析_第2页
江苏省南京市2025届高一上数学期末考试试题含解析_第3页
江苏省南京市2025届高一上数学期末考试试题含解析_第4页
江苏省南京市2025届高一上数学期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市2025届高一上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点2.已知a>b,则下列式子中一定成立的是()A. B.|a|>|b|C. D.3.已知一个水平放置的平面四边形的直观图是边长为1的正方形,则原图形的周长为()A.6 B.8C. D.4.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在5.用长度为24米的材料围成一矩形场地,中间加两道隔墙(如图),要使矩形的面积最大,则隔墙的长度为A.3米 B.4米C.6米 D.12米6.一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时 B.2小时C.2.5小时 D.3小时7.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.8.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.9.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)10.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则上的最小值是_________.12.若函数满足,则______13.若角的终边经过点,则___________.14.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________15.已知集合,.若,则___________.16.已知函数,其所有的零点依次记为,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数的图象通过变换得到的图象.18.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.19.已知集合,,,全集为实数集()求和()若,求实数的范围20.已知向量,,,求:(1),;(2)21.已知函数(1)求的最小正周期;(2)求的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C2、D【解析】利用特殊值法以及的单调性即可判断选项的正误.【详解】对于A,若则,故错误;对于B,若则,故错误;对于C,若则,故错误;对于D,由在上单调增,即,故正确.故选:D3、B【解析】由斜二测画法的规则,把直观图还原为原平面图形,再求原图形的周长【详解】解:由斜二测画法的规则知,与轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,所以在平面图中其在轴上,且其长度变为原来2倍,是,其原来的图形如图所示;所以原图形的周长是:故选:【点睛】本题考查了平面图形的直观图应用问题,能够快速的在直观图和原图之间进行转化,是解题的关键,属于中档题4、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.5、A【解析】主要考查二次函数模型的应用解:设隔墙长度为,则矩形另一边长为=12-2,矩形面积为=(12-2)=,0<<6,所以=3时,矩形面积最大,故选A6、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D7、B【解析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B8、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C9、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.10、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:12、【解析】根据题意,令,结合指数幂的运算,即可求解.【详解】由题意,函数满足,令,可得.故答案为:.13、【解析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.14、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题15、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:16、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析.【解析】(Ⅰ)分别令取、、、、,列表、描点、连线可作出函数在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数的图象通过变换得到的图象的变换过程.【详解】(Ⅰ)列表如下:函数在一个周期内的图象简图如下图所示:(Ⅱ)总共有种变换方式,如下所示:方法一:先将函数的图象向左平移个单位,将所得图象上每个点的横坐标缩短为原来的倍,再将所得图象上每个点的纵坐标伸长为原来的倍,可得到函数的图象;方法二:先将函数的图象向左平移个单位,将所得图象上每个点的纵坐标伸长为原来的倍,再将所得图象上每个点的横坐标缩短为原来的倍,可得到函数的图象;方法三:先将函数的图象上每个点的横坐标缩短为原来的倍,将所得图象向左平移个单位,再将所得图象上每个点的纵坐标伸长为原来的倍,可得到函数的图象;方法四:先将函数的图象上每个点的横坐标缩短为原来的倍,将所得图象上每个点的纵坐标伸长为原来的倍,再将所得图象向左平移个单位,可得到函数的图象;方法五:先将函数的图象上每个点的纵坐标伸长为原来的倍,将所得图象上每个点的横坐标缩短为原来的倍,再将所得图象向左平移个单位,可得到函数的图象;方法六:先将函数的图象上每个点的纵坐标伸长为原来的倍,将所得图象向左平移个单位,再将所得图象上每个点的横坐标缩短为原来的倍,可得到函数的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最大值,即;19、(1),.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论