版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆阿克苏地区库车县乌尊镇乌尊中学数学高一上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则的值为A. B.C. D.2.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8313.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A. B.C. D.4.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:班级人数平均分数方差甲302乙203其中,则甲、乙两个班数学成绩的方差为()A.2.2 B.2.6C.2.5 D.2.45.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸6.函数的部分图象如图所示,则的值为()A. B.C. D.7.,则()A.64 B.125C.256 D.6258.对于①,②,③,④,⑤,⑥,则为第二象限角的充要条件是()A.①③ B.③⑤C.①⑥ D.②④9.已知函数,若,则x的值是()A.3 B.9C.或1 D.或310.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.满足的集合的个数是______________12.已知,则__________.13.若函数过点,则的解集为___________.14.点关于直线的对称点的坐标为______.15.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________16.—个几何体的三视图如图所示,则该几何体的体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知且.(1)求的解析式;(2)解关于x不等式:.18.解关于的不等式.19.已知.(1)求,的值;(2)求的值.20.已知函数,(,且).(1)求的定义域,并判断函数的奇偶性;(2)对于,恒成立,求实数的取值范围.21.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.2、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A3、A【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选A【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题4、D【解析】根据平均数和方差的计算性质即可计算.【详解】设甲、乙两班学生成绩分别为,甲班平均成绩为,乙班平均成绩为,因为甲、乙两班的平均成绩相等,所以甲、乙两班合在一起后平均成绩依然为,因为,同理,∴甲、乙两班合在一起后的方差为:.故选:D.5、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.6、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.7、D【解析】根据对数的运算及性质化简求解即可.【详解】,,,故选:D8、C【解析】利用三角函数值在各个象限的符号判断.【详解】为第二象限角的充要条件是:①,④,⑥,故选:C.9、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A10、A【解析】解两个不等式,利用集合的包含关系判断可得出结论.【详解】解不等式可得,解不等式可得或,因为或,因此,“”是“”的充分不必要条件.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】利用集合的子集个数公式求解即可.【详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.12、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:13、【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:14、【解析】设点关于直线的对称点为,由垂直的斜率关系,和线段的中点在直线上列出方程组即可求解.【详解】设点关于直线的对称点为,由对称性知,直线与线段垂直,所以,所以,又线段的中点在直线上,即,所以,由,所以点关于直线的对称点的坐标为:.故答案为:.15、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用16、30【解析】由三视图可知这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体长方体的体积为五棱柱的体积是故该几何体的体积为点睛:本题主要考查的知识点是由三视图求面积,体积.本题通过观察三视图这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体,分别求出长方体和五棱柱的体积,然后相加可得答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知条件联立方程组求出,进而求出函数的解析式;(2)根据已知条件求出,进而得出不等式,利用换元法及一元二次不等式得出的范围,再根据指数与对数互化解指数不等式即可.【小问1详解】由,得,解得.所以的解析式为.【小问2详解】由(2)知,,所以,由,得,即,令,则,解得或所以,即,解得.所以不等式的解集为.18、答案见解析【解析】不等式等价于,再分,和三种情况讨论解不等式.【详解】原不等式可化为,即,①当,即时,;②当,即时,原不等式的解集为;③当,即时,.综上知:当时,原不等式的解集为;当时,原不等式的解集为;当时原不等式的解集为.19、(1),(2)【解析】(1)根据同角三角函数关系得到余弦值,正切值,利用二倍角公式求得;(2)在第一问的基础上,利用余弦的差角公式进行求解.【小问1详解】∵,且,∴,∴,.【小问2详解】20、(1)定义域为;奇函数;(2)时,;时,.【解析】(1)由对数的真数大于0,解不等式可得定义域;运用奇偶性的定义,即可得到结论;(2)对a讨论,,,结合对数函数的单调性,以及参数分离法,二次函数的最值求法,可得m的范围【详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;2对于,恒成立,可得当时,,由可得的最小值,由,可得时,y取得最小值8,则,当时,,由可得的最大值,由,可得时,y取得最大值,则,综上可得,时,;时,【点睛】本题主要考查了函数的奇偶性的判定,以及对数的运算性质和二次函数的图象与性质的应用,其中解答中熟记函数的奇偶性的定义,以及对数的运算性质和二次函数的图象与性质的合理应用是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,试题有一定的综合性,属于中档试题.21、(1)见解析(2)见解析【解析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度技术开发合作合同标的详细规定3篇
- 二零二五年度智能交通系统建设合同条款与交通管理规范3篇
- 二零二五年度新能源发电项目特许经营合同3篇
- 二零二五年度建委出台的15项建筑工程施工质量保证金合同2篇
- 二零二五年度施工安全责任合同书模板下载大全2篇
- 二零二五年度建材行业展会策划与组织合同3篇
- 二零二五年度房产出售附带物业管理合同3篇
- 二零二五年度HBDSCZ项目合作协议书3篇
- 二零二五年度文化娱乐产业项目标准保证担保合同2篇
- 2025年度城市安全规划与评价合同2篇
- 现场工艺纪律检查表
- 建井施工方案
- YMO青少年数学思维28届五年级全国总决赛试卷
- 烘干厂股东合作协议书
- 个人业绩相关信息采集表
- 过敏性紫癜课件PPT
- 大学生暑期社会实践证明模板(20篇)
- 自来水维修员年度工作总结
- ASTMB117-2023年盐雾试验标准中文
- 国际海上避碰规则(中英版)课件
- 小学思政课《爱国主义教育》
评论
0/150
提交评论