版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市高密市2025届高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的递增区间是()A. B.和C. D.和2.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.3.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.4.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石5.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.6.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人7.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.8.若函数,满足且,则()A.1 B.2C.3 D.49.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.510.已知数列中,,(),则()A. B.C. D.211.方程与的曲线在同一坐标系中的示意图应是()A. B.C. D.12.过点且与原点距离最大的直线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.14.函数的图象在点处的切线方程为____.15.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件16.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围18.(12分)已知函数为常数,函数.(1)讨论函数的单调性;(2)若函数的图象与直线相切,求实数的值;(3)当时,在上有两个极值点且恒成立,求实数的取值范围.19.(12分)求适合下列条件的椭圆的标准方程:(1)经过点,;(2)长轴长是短轴长的3倍,且经过点20.(12分)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长21.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分22.(10分)如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.2、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.3、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.4、D【解析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.5、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C6、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B7、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.8、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C9、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.10、A【解析】由已知条件求出,可得数是以3为周期的周期数列,从而可得,进而可求得答案【详解】因为,(),所以,所以数列的周期为3,,故选:A11、A【解析】方程即,表示抛物线,方程表示椭圆或双曲线,当和同号时,抛物线开口向左,方程表示焦点在轴的椭圆,无符合条件的选项;当和异号时,抛物线开口向右,方程表示双曲线,本题选择A选项.12、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,二面角等于,根据,结合向量的运算,即可求解.【详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:14、【解析】先求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程.【详解】由题意,,,则切线方程为:.故答案为:.15、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).16、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:25三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)4(2)【解析】(1)根据纯虚数,实部为零,虚部不为零列式即可;(2)根据第三象限,实部小于零,虚部小于零,列式即可.【小问1详解】因为为纯虚数,所以解得或,且且综上可得,当为纯虚数时;【小问2详解】因为在复平面内对应的点位于第三象限,解得或,且即,故的取值范围为.18、(1)答案见解析;(2)7;(3)【解析】(1)根据题意求得,讨论,,,时解,即可得出函数的单调区间;(2)设切点为则结合,得令通过求导研究单调性解得进而解出的值.(3)由已知可得解析式,观察有,求导得原题意可转化为函数在上有两个不同零点.结合根分布可得,函数的两个极值点为是在上的两个不同零点可得且,代入函数中令通过单调性求出进而可得答案.【详解】解:(1),令,解得:①当时,由得,由得,在上单调递减,在上单调递增;②当时,由得或由得所以在上单调递减,在上单调递增;③当时,恒成立,所以上单调递增.④当时,由得或由得所以在上单调递减,在上单调递增.综上:①当时,在上单调递减,在上单调递增;②当时,在上单调递减,在上单调递增;③当时,在上单调递增.④当时,在上单调递减,在上单调递增.(2)设切点为则(*),由可得(**),联立(*)(**)可得,设则,所以在单调递增,在单调递减,又,所以,所以.(3)由已知可得令由题意知在上有两个不同零点.则,因为函数的两个极值点为,则和是在上的两个不同零点.所以且,所以令则所以在上单调递增,所以有其中,即又恒成立,所以故实数的取值范围为.【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19、(1);(2)或.【解析】(1)由已知可得,,且焦点在轴上,进而可得椭圆的标准方程;(2)由已知可得,,此时焦点在轴上,或,,此时焦点在轴上,进而可得椭圆的标准方程;【小问1详解】解:椭圆经过点,,,,,且焦点在轴上,椭圆的标准方程为.【小问2详解】解:长轴长是短轴长的3倍,且经过点,当点在长轴上时,,,此时焦点在轴上,此时椭圆的标准方程为;当点在短轴上时,,,此时焦点在轴上,此时椭圆的标准方程.综合得椭圆的方程为或.20、(1)(2)【解析】(1)利用正弦定理化简已知条件,求得,由此求得.(2)利用正弦定理求得,由列方程来求得.【小问1详解】,由正弦定理得,因为,所以,.【小问2详解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,21、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程车辆买卖版合同 3篇
- 2024版食堂餐饮油烟处理合同2篇
- 2024年度专利实施许可合同纠纷2篇
- 二零二四年度艺术品交易居间协议3篇
- 二零二四年度鼎千农业开发有限公司粮食作物种植与销售合同3篇
- 2024年度工程合同管理与执行居间合同3篇
- 2024版演艺活动策划与执行合同
- 2024版物业维修合同2篇
- 股权质押借款合同范本
- 劳动合同模板范本简单版
- 《饮料对人体的危害》课件
- 2024-2030年中国腐乳行业发展趋势及营销模式分析报告
- 手术室专科习题及答案
- 专题04 任务型阅读10道
- 2024年山东省公务员考试《行测》真题及答案解析
- 期中测试卷(1~4单元)(试题)2024-2025学年五年级上册数学北师大版
- 教师课题结题资料汇编培训
- 北师大版六年级上册数学期末考试试卷带答案
- 餐饮服务课件 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 22秋军事理论学习通超星期末考试答案章节答案2024年
- 环保设备智能监控系统开发合同
评论
0/150
提交评论