云南省昆明市五华区2025届数学高二上期末复习检测试题含解析_第1页
云南省昆明市五华区2025届数学高二上期末复习检测试题含解析_第2页
云南省昆明市五华区2025届数学高二上期末复习检测试题含解析_第3页
云南省昆明市五华区2025届数学高二上期末复习检测试题含解析_第4页
云南省昆明市五华区2025届数学高二上期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市五华区2025届数学高二上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体OABC中,点M在线段OA上,且,N为BC中点,已知,,,则等于()A. B.C. D.2.抛物线的焦点坐标A. B.C. D.3.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.4.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.55.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.6.已知,则在方向上的投影为()A. B.C. D.7.为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A. B.C. D.8.若函数在区间上有两个极值点,则实数的取值范围是()A. B.C. D.9.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.10.在中,角A,B,C所对的边分别为a,b,c,已知,则的面积为()A. B.C. D.11.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.12.设,向量,,,且,,则()A. B.C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知蜥蜴的体温与阳光照射的关系可近似为,其中为蜥蜴的体温(单位:℃)为太阳落山后的时间(单位:).当________时,蜥蜴体温的瞬时变化率为14.已知数列满足,若对任意恒成立,则实数的取值范围为________15.函数的单调递减区间是____16.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.18.(12分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.19.(12分)已知数列的前n项和为,满足,(1)求证:数列是等比数列,并求数列的通项公式;(2)设,为数列的前n项和,①求;②若不等式对任意的正整数n恒成立,求实数的取值范围20.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?21.(12分)已知直线,圆.(1)证明:直线l与圆C相交;(2)设l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为,在点B处的切线为,与的交点为Q.试探究:当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.22.(10分)已知向量,.(1)计算和;(2)求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量基本定理结合已知条件求解【详解】因为N为BC中点,所以,因为M在线段OA上,且,所以,所以,故选:B2、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B3、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B4、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C5、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.6、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C7、D【解析】根据每个个体被抽取的概率都是相等的、被剔除的概率也都是相等的,分别由剔除的个数和抽取的样本容量除以总体个数即可求解.【详解】根据系统抽样的定义和方法可知:每个个体被抽取的概率都是相等的,每个个体被剔除的概率也都是相等的,所以每个个体被剔除的概率为,每个个体被抽取的概率为,故选:D.8、D【解析】由题意,即在区间上有两个异号零点,令,利用函数的单调性与导数的关系判断单调性,数形结合即可求解【详解】解:由题意,即在区间上有两个异号零点,构造函数,则,令,得,令,得,所以函数在上单调递增,在上单调递减,又时,,时,,且,所以,即,所以的范围故选:D9、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.10、A【解析】由余弦定理计算求得角,根据三角形面积公式计算即可得出结果.【详解】由余弦定理得,,∴,∴,故选:A11、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B12、C【解析】根据空间向量垂直与平行的坐标表示,求得的值,得到向量,进而求得,得到答案.【详解】由题意,向量,,,因为,可得,解得,即,又因为,可得,解得,即,可得,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】求得导函数,令,计算即可得出结果.【详解】,,令,得:.解得:.时刻min时,蜥蜴的体温的瞬时变化率为故答案为:5.14、【解析】根据给定条件求出,构造新数列并借助单调性求解作答.【详解】在数列中,,当,时,,则有,而满足上式,因此,,,显然数列是递增数列,且,,又对任意恒成立,则,所以实数的取值范围为.故答案为:【点睛】思路点睛:给定数列的前项和或者前项积,求通项时,先要按和分段求,然后看时是否满足时的表达式,若不满足,就必须分段表达.15、【解析】求导,根据可得答案.【详解】由题意,可得,令,即,解得,即函数的递减区间为.故答案为:.【点睛】本题考查运用导函数的符号,研究函数的单调性,属于基础题.16、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)由导数得出在上的单调性;(2)设和之间的隔离直线为y=kx+b,由题设条件得出对任意恒成立,再由二次函数的性质求解即可.【小问1详解】,当时,在上单调递增在内单调递增【小问2详解】设和之间的隔离直线为y=kx+b则对任意恒成立,即对任意恒成立由对任意恒成立,得当时,则有符合题意;当时,则有对任意恒成立的对称轴为又的对称轴为即故和之间存在“隔离直线”,且b的最小值为-4.【点睛】关键点睛:在解决问题一时,求了一阶导得不了函数的单调性,再次求导得,进而得出在恒成立,得在上的单调性.18、(1);(2),.【解析】(1)根据题意可得,然后根据,,计算可得,最后可得结果.(2)假设直线的方程为,根据与抛物线相切,可得,然后与椭圆联立,计算,然后计算点到的距离,计算,利用函数性质可得结果.【详解】(1)由题意知:,.,得:,所以.所以的方程为.(2)设直线的方程为,则由,得得:所以直线的方程为.由,得得.又,所以点到的距离为..令,则,.此时,即【点睛】本题考查直线与圆锥曲线的综合以及三角形面积问题,本题着重考查对问题分析能力以及计算能力,属难题.19、(1)证明见解析,(2)①;②【解析】(1)由得到,即可得到,从而得证,即可求出的通项公式,从而得到的通项公式;(2)①由(1)可得,再利用错位相减法求和即可;②利用作差法证明的单调性,即可得到,即可得到,再解一元二次不等式即可;【小问1详解】证明:由,,当时,可得,解得,当时,,又,两式相减得,所以,所以,即,则数列是首项为,公比为的等比数列;所以,所以【小问2详解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即单调递增,所以,因为不等式对任意的正整数n恒成立,所以,即,解得或,即20、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4台机器在任何时刻同时出现故障时能及时进行维修的概率为100%,该厂获利的均值为万元∴若该厂要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%时,雇佣3名工人使该厂每月获利最大21、(1)证明见解析;(2);(3)点Q恒在直线上,理由见解析.【解析】(1)求出直线过定点,得到在圆内部,故证明直线l与圆C相交;(2)设出点,利用垂直得到等量关系,整理后即为轨迹方程;(3)利用Q、A、B、C四点共圆,得到此圆方程,联立,求出相交弦的方程,即直线的方程,根据直线过的定点,得到,从而得到点Q恒在直线上.【小问1详解】证明:直线过定点,代入得:,故在圆内,故直线l与圆C相交;【小问2详解】圆的圆心为,设点,由垂径定理得:,即,化简得:,点M的轨迹方程为:【小问3详解】设点,由题意得:Q、A、B、C四点共圆,且圆的方程为:,即,与圆C的方程联立,消去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论