江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题含解析_第1页
江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题含解析_第2页
江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题含解析_第3页
江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题含解析_第4页
江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上高县二中2025届数学高一上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为的边的中点,为内一点,且满足,则()A. B.C. D.2.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.3.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.4.已知为第二象限角,则的值是()A.3 B.C.1 D.5.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.6.若,则的最小值为()A.4 B.3C.2 D.17.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.8.已知是两条直线,是两个平面,则下列命题中正确的是A. B.C. D.9.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④10.设集合,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则ab=_____________.12.若,且,则的值为__________13.在上,满足的取值范围是______.14.若幂函数的图象过点,则___________.15.若,则__________16.直线与直线关于点对称,则直线方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1)94(2)lg5+lg2⋅18.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整;函数的解析式为(直接写出结果即可);(2)根据表格中的数据作出一个周期的图象;(3)求函数在区间上最大值和最小值19.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.20.已知,非空集合,若S是P的子集,求m的取值范围.21.如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数的定义域为且.(Ⅰ)若,,求的定义域;(Ⅱ)当时,若为“同域函数”,求实数的值;(Ⅲ)若存在实数且,使得为“同域函数”,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据,确定点的位置;再根据面积公式,即可求得结果.【详解】如图取得点,使得四边形为平行四边形,,故选:C.【点睛】本题考查平面向量的基本定理,以及三角形的面积公式,属综合中档题.2、C【解析】利用二次函数的单调性可得答案.【详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C3、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.4、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.5、A【解析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:6、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.7、A【解析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A8、D【解析】A不正确,因为n可能在平面内;B两条直线可以不平行;C当m在平面内时,n此时也可以在平面内.故选项不对D正确,垂直于同一条直线的两个平面是平行的故答案为D9、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.10、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.12、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.13、【解析】结合正弦函数图象可知时,结合的范围可得到结果.【详解】本题正确结果:【点睛】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.14、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.15、【解析】先求出的值,然后再运用对数的运算法则求解出和的值,最后求解答案.【详解】若,则,所以.故答案为:【点睛】本题考查了对数的运算法则,熟练掌握对数的各运算法则是解题关键,并能灵活运用法则来解题,并且要计算正确,本题较为基础.16、【解析】由题意可知,直线应与直线平行,可设直线方程为,由于两条至直线关于点对称,可通过计算点分别到两条直线的距离,通过距离相等,即可求解出,完成方程的求解.【详解】解:由题意可设直线的方程为,则,解得或舍去,故直线的方程为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)12【解析】(1)根据指数幂的运算法则逐一进行化简;(2)根据对数幂的运算法则进行化简;【详解】解:(1)原式=3(2)原式=lg【点睛】指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂形式表示,运用指数幂的运算性质来解答.18、(1)见解析;(2)详见解析;(3)当时,;当时,【解析】(1)由表中数据可以得到的值与函数周期,从而求出,进而求出,即可得到函数的解析式,利用函数解析式可将表中数据补充完整;(2)结合三角函数性质与表格中的数据可以作出一个周期的图象;(3)结合正弦函数单调性,可以求出函数的最值【详解】(1)根据表中已知数据,解得,,,数据补全如下表:函数表达式为.(2)根据表格中的数据作出一个周期的图象见下图:(3)令,,则,则,,可转化为,,因为正弦函数在区间上单调递减,在区间(上单调递增,所以,在区间上单调递减,在区间(上单调递增,故的最小值为,最大值为,由于时,;时,,故当时,;当时,.【点睛】本题考查了三角函数的图象与性质,属于中档题19、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.20、【解析】由,解得.根据非空集合,S是P的子集,可得,解得范围【详解】由,解得.,非空集合.又S是P的子集,,解得的取值范围是,【点睛】本题考查了不等式的解法和充分条件的应用,考查了推理能力与计算能力,意在考查学生对这些知识的理解掌握水平21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当,时,解出不等式组即可;(Ⅱ)当时,,分、两种情况讨论即可;(Ⅲ)分、且、且三种情况讨论即可.【详解】(Ⅰ)当,时,由题意知:,解得:.∴的定义域为;(Ⅱ)当时,,(1)当,即时,的定义域为,值域为,∴时,不是“同域函数”.(2)当,即时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论