版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页山东临沂经济开发区2025届九年级数学第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有()A.1个 B.2个 C.3个 D.4个2、(4分)如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定3、(4分)已知直线经过点,则直线的图象不经过第几象限()A.一 B.二 C.三 D.四4、(4分)如图,将两块完全相同的矩形纸片ABCD和矩形纸片AEFG按图示方式放置(点A、D、E在同一直线上),连接AC、AF、CF,已知AD=3,DC=4,则CF的长是()A.5 B.7 C.52 D.105、(4分)如图,在中,,,则的度数是()A. B. C. D.6、(4分)如图,,下列条件中不能使的是()A. B. C. D.7、(4分)如果多项式x2+kx+49能分解成(x-7)2的形式,那么k的值为()A.7 B.-14 C.±7 D.±148、(4分)如图,E为▱ABCD外一点,且EB⊥BC于点B,ED⊥CD于点D,若∠E=50°,则∠A的度数为()A.135° B.125°C.130° D.35°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在直角坐标系中,直线y=x+2与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+2上,点C10、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.11、(4分)已知一组数据10,10,x,8的众数与它的平均数相等,则这组数的中位数是____.12、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.13、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:尺码/厘米2222.52323.52424.525销售量/双12311864该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.三、解答题(本大题共5个小题,共48分)14、(12分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…(应用与探究)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)15、(8分)先化简,再求值:(+a﹣2)÷,其中a=+1.16、(8分)如图,在四边形中,,,对角线,交于点,平分,过点作,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.17、(10分)按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)18、(10分)如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。证明:(1)FC=AD;(2)AB=BC+AD。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.20、(4分)关于一元二次方程的一个根为,则另一个根为__________.21、(4分)点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为.22、(4分)如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.23、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).二、解答题(本大题共3个小题,共30分)24、(8分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,(1)如图①,当点E、F分别在线段AD、DC上,①判断△EBF的形状,并说明理由;②若四边形ABFD的面积为7,求DE的长;(2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.25、(10分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)断⊿BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.26、(12分)解不等式组并在数轴上表示出不等式组的解集.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据正方形的四条边都相等,对角线互相垂直平分且每一条对角线平分一组对角的性质,再加上各选项的条件,对各选项分析判断后即可得出正确选项的个数【详解】解:如图,连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,AO=CO,BO=DO,①在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=BF,∵AC⊥BD,∴OE=OF,所以四边形BEDF是菱形,故①选项正确;②在正方形ABCD中,AC=BD,∴OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②选项正确;③AB=AF,不能推出四边形BEDF其它边的关系,故不能判定是菱形,本选项错误;④BE=BF,同①的后半部分证明,故④选项正确.所以①②④共3个可以判定四边形BEDF是菱形.故选:C.本题主要考查菱形的判定定理,还综合考查了正方形的性质、全等三角形的判定和性质等,熟练掌握菱形的判定定理是解题的关键.2、B【解析】
根据“勾股定理的逆定理”结合已知条件分析判断即可.【详解】解:∵三条线段的长a,b,c满足a2=c2-b2,∴a2+b2=c2,∴这三条线段组成的三角形是直角三角形故选B.本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.3、B【解析】
把点p代入求出b值,再观察k>0,b<0,根据一次函数图象与k,b的关系得出答案.【详解】因为直线经过点,所以b=-3,然后把b=-3代入,得直线经过一、三、四象限,所以直线的图象不经过第二象限.故选:B本题考查一次函数y=kx=b(k≠0)图象与k,b的关系(1)图象是过点(-,0),(0,b)的一条直线(2)当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限;当k<0,b<0时,图像过二、三、四象限.4、C【解析】
由两块完全相同的矩形纸片ABCD和矩形纸片AEFG,得出AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,由勾股定理求出AC=5,由SAS证得△FGA≌△ABC,得出AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,由∠GFA+∠GAF=90°,推出∠GAF+BAC=90°,得出∠FAC=90°,即△CAF是等腰直角三角形,即可得出结果.【详解】∵两块完全相同的矩形纸片ABCD和矩形纸片AEFG,∴AG=AD=BC=3,FG=AB=CD=4,∠FGA=∠ABC=90°,AC=AB2在△FGA和△ABC中,FG=∴△FGA≌△ABC(SAS),∴AF=AC,∠GFA=∠BAC,∠GAF=∠BCA,∵∠GFA+∠GAF=90°,∴∠GAF+BAC=90°,∴∠FAC=90°,∴△CAF是等腰直角三角形,∴CF=2AC=52,故选C.本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质,证明三角形全等与等腰直角三角形的判定是解题的关键.5、B【解析】
在平行四边形ABCD中可求出∠C=∠A=75°,利用两直线平行,同旁内角互补可以求∠ABD的度数.【详解】在中,△BCD是等腰三角形∠C=∠DBC=75°又∠C+∠ABC=180°即∠C+∠DBC+∠ABD=180°∠ABD=180°-∠C-∠DBC=180°-75°-75°=30°此题考查了平行四边形的性质、三角形的内角和定义、等腰三角形的性质.6、D【解析】
根据条件和图形可得∠1=∠2,AD=AD,再根据全等三角形的判定定理分别添加四个选项所给条件进行分析即可.【详解】解:根据条件和图形可得∠1=∠2,AD=AD,
A、添加可利用SAS定理判定,故此选项不合题意;
B、添加可利用AAS定理判定,故此选项不合题意;
C、添加可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加不能判定,故此选项符合题意;故选:D.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、B【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵x2+kx+49=(x-7)2,
∴k=2×1×(-7)=-14,
故选:B.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.8、C【解析】
首先由四边形内角和定理求出∠C=130°,然后根据平行四边形对角相等可得答案.【详解】解:∵EB⊥BC,ED⊥CD,∠E=50°,∴∠EBC=90°,∠EDC=90°,∴在四边形EBCD中,∠C=360°-∠EBC-∠EDC-∠E=360°-90°-90°-50°=130°,∴在▱ABCD中∠A=∠C=130°,故选:C.本题考查了四边形的内角和定理,平行四边形的性质,熟练掌握相关性质定理是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】
结合正方形的性质结合直线的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3【详解】解:令一次函数y=x+2中x=0,则y=2,∴点A1的坐标为(0,2),O∵四边形AnBn∴A1B1=OC1令一次函数y=x+2中x=2,则y=4,即A2∴A∴tan∵A∴tan∴A2B1=OC1∴S1=12OC∴Sn=故答案为:22n-1本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.10、1【解析】
根据算术平均数的计算方法列方程求解即可.【详解】解:由题意得:解得:.故答案为1.此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.11、10【解析】试题分析:由题意可知这组数据的众数为10,再根据平均数公式即可求得x的值,最后根据中位数的求解方法求解即可.解:由题意得这组数据的众数为10∵数据10,10,x,8的众数与它的平均数相等∴,解得∴这组数据为12,10,10,8∴这组数的中位数是10.考点:统计的应用点评:统计的应用是初中数学的重点,是中考必考题,熟练掌握各种统计量的计算方法是解题的关键.12、1【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【详解】解:∵b=+﹣2,∴∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.13、众数【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.三、解答题(本大题共5个小题,共48分)14、[发现与证明]:证明见解析;[应用与探究]:AC的长为或1.【解析】
[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.【详解】解:[发现与证明]:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=(180°-∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;[应用与探究]:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=BC=;②如图1所示:AC=BC=1;综上所述:AC的长为或1.本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.15、,2﹣.【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【详解】解:原式===,当a=+1时,原式==2﹣.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.16、(1)见解析;(2).【解析】
(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=1,在Rt△OCD中,由勾股定理得:OD==2,得出BD=2OD=4,再由直角三角形斜边上的中线性质即可得出结果.【详解】(1)证明:,,平分,,,,,,,四边形是平行四边形,又,四边形是菱形;(2)四边形是菱形,,,,在中,由勾股定理得:,,,,,.本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.17、(1),;(2),【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.【详解】(1)∴解得,,;(2)在这里,,b=-2,∴解得,,本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:18、(1)见解析;(2)见解析【解析】
(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【详解】(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.一、填空题(本大题共5个小题,每小题4分,共20分)19、60°或300°【解析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.【详解】解:如图,连接,∵四边形ABCD是矩形,∴CD=AB,∠DAB=∠ADC=90°,∵DG=AG,∴∠ADG=∠DAG,∴∠CDG=∠GAB,且CD=AB,DG=AG,∴△DCG≌△ABG(SAS),∴CG=BG,∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,∴BC=BG,∠CBG=α,∴BC=BG=CG,∴△BCG是等边三角形,∴∠CBG=α=60°,同理当G点在AD的左侧时,△BCG仍是等边三角形,Α=300°故答案为60°或300°.本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.20、1【解析】
利用根与系数的关系可得出方程的两根之积为-1,结合方程的一个根为-1,可求出方程的另一个根,此题得解.【详解】∵a=1,b=m,c=-1,
∴x1•x2==-1.
∵关于x一元二次方程x2+mx-1=0的一个根为x=-1,
∴另一个根为-1÷(-1)=1.
故答案为:1.此题考查根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.21、(5,-1).【解析】试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).考点:各象限内点的坐标的特征.22、【解析】
如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.【详解】如图,AB=DE=10,AC=6,DC=8,∠C=90°,∴BC==8,CE==6,∴BE=BC-CE=2(米),故答案为2.本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.23、AF=CE(答案不唯一).【解析】
根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.二、解答题(本大题共3个小题,共30分)24、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.【解析】
(1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.(2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.【详解】解:(1)①△EBF是等边三角形.理由如下:如图1中,连接BD,∵四边形ABCD是菱形,∴AD=AB,∵∠ADB=60°,∴△ADB是等边三角形,△BDC是等边三角形,∴AB=BD,∠ABD=∠A=∠BDC=60°,∵∠ABD=∠EBF=60°,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴BE=BF,∵∠EBF=60°,∴△EBF是等边三角形.②如图1中,作BH⊥AD于H.在Rt△ABH中,BH=2,∴S△ABD=•AD•BH=4,∵S四边形ABFD=7,∴S△BDF=S△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省绥化市望奎县第五中学2024-2025学年部编版八年级上学期期中历史试卷
- 2024年隗凝婚约解除协议
- 洗碗机专用洗碗筐项目评价分析报告
- 双层床项目可行性实施报告
- 电子琴项目可行性实施报告
- 2024年连锁餐饮合作经营合同
- 电子工业设备相关项目建议书
- 电镀机相关项目建议书
- 小升初英语专项复习练习题 专题4:语音
- 建筑业现场安全作业规程
- GB/T 18281.7-2024医疗保健产品灭菌生物指示物第7部分:选择、使用和结果判断指南
- 北京四中初一年级期中语文试题
- 2024年消防宣传月知识竞赛考试题库300题(含答案)
- 二十届三中全会精神学习试题及答案(100题)
- 2024二十届三中全会知识竞赛题库及答案
- 2024年江苏省昆山市自然资源和规划局招聘编外13人历年(高频重点复习提升训练)共500题附带答案详解
- 小学一年级拼音天天练
- 一年级数学专项练习(大括号问题、求总数、求部分数、一图四式)
- 档案整理及数字化服务方案
- 气缸工艺卡要点
- 年产5000吨PPR管材的生产设计
评论
0/150
提交评论