版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省泗县双语中学数学高二上期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.2.120°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知,,,则CD的长为()A. B.C. D.3.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.4.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.5.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.6.抛物线的准线方程是()A. B.C. D.7.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.8.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.9.设等比数列的前项和为,若,则的值是()A. B.C. D.410.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或211.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.12.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.14.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.15.点到直线的距离为_______.16.已知函数是上的奇函数,,对,成立,则的解集为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围18.(12分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值19.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;20.(12分)已知椭圆点(1)若椭圆的左焦点为,上顶点为,求点到直线的距离;(2)若点是椭圆的弦的中点,求直线的方程21.(12分)已知,,其中.(1)求的值;(2)设(其中、为正整数),求的值.22.(10分)已知公差不为零的等差数列的前项和为,,且,,成等比数列(1)求的通项公式;(2)记,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.2、B【解析】由,把展开整理求解【详解】由已知可得:,,,,=41,∴.故选:B3、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A4、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.5、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D6、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.7、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.8、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.9、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.10、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B11、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.12、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:14、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:15、【解析】应用点线距离公式求点线距离.【详解】由题设,点到距离为.故答案为:16、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析.(3)【解析】(1)由已知关系得出是等差数列及公差,然后可得通项公式;(2)由已知关系式,利用累加法证明对任意的,恒成立,即可得(3)由累加法求得通项公式,然后确定的奇数项和偶数项的单调性,得出数列的最大项和最小项,再利用已知范围解得的范围【小问1详解】由已知,是等差数列,公差为6,所以;【小问2详解】对任意的,恒成立,而恒成立,若,则,恒成立,同理若,也有恒成立,所以对任意的,恒成立,即是最小项;【小问3详解】时,,所以,也适合此式所以,若,则,,,即,,若,由于,且是正负相间,因此无最大项也无最小项因此有,所以的奇数项数列是递增数列,且,,的偶数项数列是递减数列,且,,所以的最大值是,最小项是,,由,又,所以18、(1)证明见解析(2)【解析】(1)利用空间向量求出空间直线的向量积,即可证明两直线垂直.(2)利用空间向量求直线与平面所成空间角的正弦就是就出平面的法向量与直线的方向向量之间夹角的余弦即可.【小问1详解】如图,以为坐标原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,因为,,所以,即;【小问2详解】设平面的法向量为因为,由,得,令,则所以平面的一个法向量为,又所以故直线与平面所成角的正弦值为19、(1)(2)【解析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【点睛】本题主要考查了等差数列的定义、性质、通项公式、前项和公式的综合运用,属于中档题.20、(1)(2)【解析】(1)根据椭圆基本关系求得,,再利用截距式求得方程,进而求得点到直线的距离.(2)设,利用点差法求解即可.【详解】(1)椭圆的左焦点是,上顶点,方程为,即,点到直线的距离;(2)设,,,,又,,两式相减得:,,即直线的斜率为,直线的方程为:,即【点睛】本题主要考查了椭圆中的基本量运算以及点差法的运用,属于基础题.21、(1);(2).【解析】(1),,写出的展开式通项,由可得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论