版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第36讲用单摆测量重力加速度的大小目录复习目标网络构建考点一教材原型实验【夯基·必备基础知识梳理】知识点实验目的、器材、原理、步骤、注意事项、误差分析【提升·必考题型归纳】考向1实验原理与操作考向2数据处理与误差分析考点二创新实验方案【夯基·必备基础知识梳理】知识点实验方案的改进【提升·必考题型归纳】考向1实验原理的改进考向2实验器材的创新考向3实验思路的创新真题感悟理解和掌握用单摆测量重力加速度的大小实验原理,并会做出必要的误差分析。2、能够在原型实验基础上,通过对实验的改进或者创新,做出同类探究。考点要求考题统计考情分析用单摆测量重力加速度的大小2023年山西卷第23题2020年浙江卷第18题各地高考对用单摆测量重力加速度的大小这个实验的考查近几年频度不是太高,考查难度不大。考点一教材原型实验知识点实验目的、器材、原理、步骤、注意事项、误差分析1.实验目的(1)练习使用停表和刻度尺。(2)探究影响单摆运动周期的因素。(3)学会用单摆测定当地重力加速度。2.实验原理当摆角很小时,单摆做简谐运动,其运动周期为T=2πeq\r(\f(l,g)),由此得到g=eq\f(4π2l,T2),因此,只要测出摆长l和单摆的周期T,就可以求出当地的重力加速度g的值。3.实验器材单摆、游标卡尺、毫米刻度尺、停表。4.实验过程(1)在细线的一端打一个比小球上的孔径稍大一些的结,将细线穿过球上的小孔,并把细绳上端固定在铁架台上,制成单摆。(2)将铁夹固定在铁架台上端,铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示。(3)用毫米刻度尺量出摆线长度l′,用游标卡尺测出金属小球的直径,即得出金属小球半径r,计算出摆长l=l′+r。(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t,计算出单摆的振动周期T。(5)根据单摆周期公式,计算当地的重力加速度。(6)改变摆长,重做几次实验。5.数据处理(1)公式法:利用T=eq\f(t,N)求出周期,算出三次测得的周期的平均值,然后利用公式g=eq\f(4π2l,T2)求重力加速度。(2)图像法:根据测出的一系列摆长l对应的周期T,作lT2的图像,由单摆周期公式得l=eq\f(g,4π2)T2,图像应是一条通过原点的直线,如图所示,求出图线的斜率k,即可利用g=4π2k求重力加速度。6.误差分析产生原因减小方法偶然误差测量时间(单摆周期)及摆长时产生误差①多次测量求平均值②从摆球经过平衡位置时开始计时系统误差主要来源于单摆模型本身①摆球要选体积小,密度大的②最大摆角要小于5°7.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定。(2)单摆必须在同一平面内振动,且摆角小于5°。(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数。(4)小球自然下垂时,用毫米刻度尺量出悬线长l′,用游标卡尺测量小球的直径,然后算出摆球的半径r,则摆长l=l′+r。(5)一般选用1m左右的细线。考向1实验原理与操作1.某同学用单摆测定当地的重力加速度g。(1)如图所示,用游标卡尺测摆球直径。摆球直径d=mm。
(2)实验操作步骤如下:A.取一根细线,下端系住一个金属小球,上端固定在铁架台上;B.用米尺(最小刻度为1mm)测得摆线长l;C.在摆线偏离竖直方向较小夹角的位置由静止释放小球;D.用秒表记录小球完成n次全振动的总时间t,得到周期;E.改变摆线长,重复B、C、D的操作。该同学采用两种方法处理实验数据。第一种方法:根据每一组T和l,利用求出多组g值,然后计算g值的平均值,求得当地的重力加速度g。第二种方法:根据每一组T和l,在图3中描点,然后连线;根据图线的斜率,求出当地的重力加速度g。a.如果实验中测量摆线长l和单摆周期T的偶然误差都比较小,那么,第一种方法求出的重力加速度当地的重力加速度(选填“大于”、“等于”或“小于”);b.根据该同学在图2中描出的点,请在图中描绘出T2—l图线;c.该同学从图中求出图线斜率k,则重力加速度g与斜率k的关系式为g=;代入数据求得g=m/s2(结果保留3位有效数字)。
考向2数据处理与误差分析2.甲、乙两同学利用单摆测定当地重力加速度。(1)甲同学用10分度的游标卡尺测量摆球的直径,如图所示,他测量的读数应该是cm。接着他正确测量了摆线长,加上摆球半径,得到了摆长l。(2)为了测定该单摆的振动周期T,下列做法中正确的是。A.将摆球拉离平衡位置一个小角度,从静止释放开始计时,小球第一次回到释放点停止计时,以这段时间作为周期B.将摆球拉离平衡位置一个小角度,从静止释放开始计时,小球第30次回到释放点停止计时,以这段时间除以30作为周期C.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次通过最低点时开始计时,并数为0,以后小球每次经过最低点时,他依次数为1、2、3……,数到60时停止计时,以这段时间除以30作为周期D.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次向右通过最低点时开始计时,并同时数30,以后小球每次向右经过最低点时,他依次计数为29、28、27……,数到0时停止计时,以这段时间除以30作为周期(3)他根据正确方法测出了摆长l和周期T,计算当地的重力加速度的表达式为g=。(4)甲同学用上述方法测量重力加速度g,你认为最需要改进的是。(5)乙同学没有测量摆球直径,只正确测得了摆线长为l,和对应的单摆振动周期为T。然后通过改变摆线的长度,共测得6组l和对应的周期T,计算出T2,作出l-T2图线,在图线上选取相距较远的A、B两点,读出与这两点对应的坐标,如图所示。乙同学计算重力加速度的表达式为g=。(6)乙同学没有测量摆球直径,把摆线长当成了摆长。你认为他这种做法会不会引起实验的系统误差(填“会”或“不会”)考点二创新实验方案知识点:(1)实验原理的改进:借助光敏电阻测时间(2)实验器材的改进:用杆线摆替代线摆考向1实验原理的改进1.某学习小组学习了单摆的相关知识后,想利用如图甲所示的装置测量当地的重力加速度。(1)赵同学找到实验室的光敏电阻等元件,利用如图乙所示装置记录振动周期,在摆球运动的最低点的左、右两侧分别放置一激光光源与光敏电阻,光敏电阻与某自动记录仪相连,该仪器显示的光敏电阻阻值R随时间t的变化图线如图丙所示,则该单摆的振动周期为s(结果保留四位有效数字)。(2)王同学则利用计算机绘制了a、b两个摆球的振动图像(如图丁所示),由图可知,两单摆摆长之比。(3)李同学每次用同一套实验装置,用同样的步骤进行实验,但所测得的重力加速度总是偏大,其原因可能是。A.开始计时时,过早按下秒表B.测周期记录全振动次数时,将n次全振动误记为次C.摆球的质量过大D.计算摆长时,只考虑悬线的长度,没有加上小球的半径考向2实验器材的创新2.同学们用如图所示的“杆线摆”研究摆的周期与等效重力加速度的关系。杆线摆可以绕着立柱来回摆动(立柱并不转动),使摆球的运动轨迹被约束在一个倾斜的平面内。具体操作步骤如下:(1)测量“斜面”的倾角。将铁架台放在水平桌面上,在铁架台立柱上绑上重垂线,调节杆线摆的线长,使重垂线与摆杆垂直。把铁架台底座的一侧垫高,使立柱倾斜。测出静止时摆杆与重垂线的夹角为,则“斜面”的倾角。(2)根据斜面倾角,求出等效重力加速度。(3)测量杆线摆的周期。尽量减小摆杆与立柱之间的摩擦,将摆拉开一个较小的角度,轻轻释放摆球。用停表测量摆球全振动次所用的时间,则单摆的周期为。(4)改变铁架台的倾斜程度,重复实验,将所需数据记录在表格中。序号(5)为了直观体现周期与等效重力加速度的关系,请在坐标纸中选择合适的物理量与单位,补全缺少的数据点并绘图。(6)通过图线,可以计算出在摆长一定的情况下,摆的周期与等效重力加速度的关系。若忽略球的尺寸,本实验中的摆长应为填“摆线”、“摆杆”的长度,摆长为结果保留位有效数字。考向3实验思路的创新3.某实验小组用铁架台、长约1m的细绳、直径约为1cm的金属球、米尺、位移传感器、数据采集器和电脑等器材测量重力加速度。实验过程如下:(1)用游标卡尺测量小球直径d,示数如图甲所示,其示数为mm;(2)按图乙安装实验装置。当摆球静止时,测出摆长L。将摆球拉开一角度后释放,摆球做简谐运动时,位移传感器记录摆球摆动过程中位移x随时间t变化的关系,其中的一段图像如图丙所示,则此单摆的周期T=s;(3)改变摆长,重复步骤(2),测得多组数据(L,T),利用计算机作出T2-L图像,根据图像得到,则当地重力加速度大小为g=m/s2;(结果保留三位有效数字)
(4)下列说法正确的是(填选项前的字母)。A.选择密度较小的摆球,测得的g值误差较小B.把摆球从平衡位置拉开30°角后释放,重复步骤(2),仍能测出单摆周期C.用悬线的长度加摆球直径作为摆长,代入计算得到的g值偏大(2023年山西卷高考真题)一学生小组做“用单摆测量重力加速度的大小”实验。
(1)用实验室提供的螺旋测微器测量摆球直径。首先,调节螺旋测微器,拧动微调旋钮使测微螺杆和测砧相触时,发现固定刻度的横线与可动刻度上的零刻度线未对齐,如图(a)所示,该示数为mm;螺旋测微器在夹有摆球时示数如图(b)所示,该示数为mm,则摆球的直径为mm。(2)单摆实验的装置示意图如图(c)所示,其中角度盘需要固定在杆上的确定点O处,摆线在角度盘上所指的示数为摆角的大小。若将角度盘固定在O点上方,则摆线在角度盘上所指的示数为5°时,实际摆角5°(填“大于”或“小于”)。(3)某次实验所用单摆的摆线长度为81.50cm,则摆长为cm。实验中观测到从摆球第1次经过最低点到第61次经过最低点的时间间隔为54.60s,则此单摆周期为s,该小组测得的重力加速度大小为m/s2.(结果均保留3位有效数字,π2取9.870)
第36讲用单摆测量重力加速度的大小目录复习目标网络构建考点一教材原型实验【夯基·必备基础知识梳理】知识点实验目的、器材、原理、步骤、注意事项、误差分析【提升·必考题型归纳】考向1实验原理与操作考向2数据处理与误差分析考点二创新实验方案【夯基·必备基础知识梳理】知识点实验方案的改进【提升·必考题型归纳】考向1实验原理的改进考向2实验器材的创新考向3实验思路的创新真题感悟理解和掌握用单摆测量重力加速度的大小实验原理,并会做出必要的误差分析。2、能够在原型实验基础上,通过对实验的改进或者创新,做出同类探究。考点要求考题统计考情分析用单摆测量重力加速度的大小2023年山西卷第23题2020年浙江卷第18题各地高考对用单摆测量重力加速度的大小这个实验的考查近几年频度不是太高,考查难度不大。考点一教材原型实验知识点实验目的、器材、原理、步骤、注意事项、误差分析1.实验目的(1)练习使用停表和刻度尺。(2)探究影响单摆运动周期的因素。(3)学会用单摆测定当地重力加速度。2.实验原理当摆角很小时,单摆做简谐运动,其运动周期为T=2πeq\r(\f(l,g)),由此得到g=eq\f(4π2l,T2),因此,只要测出摆长l和单摆的周期T,就可以求出当地的重力加速度g的值。3.实验器材单摆、游标卡尺、毫米刻度尺、停表。4.实验过程(1)在细线的一端打一个比小球上的孔径稍大一些的结,将细线穿过球上的小孔,并把细绳上端固定在铁架台上,制成单摆。(2)将铁夹固定在铁架台上端,铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示。(3)用毫米刻度尺量出摆线长度l′,用游标卡尺测出金属小球的直径,即得出金属小球半径r,计算出摆长l=l′+r。(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t,计算出单摆的振动周期T。(5)根据单摆周期公式,计算当地的重力加速度。(6)改变摆长,重做几次实验。5.数据处理(1)公式法:利用T=eq\f(t,N)求出周期,算出三次测得的周期的平均值,然后利用公式g=eq\f(4π2l,T2)求重力加速度。(2)图像法:根据测出的一系列摆长l对应的周期T,作lT2的图像,由单摆周期公式得l=eq\f(g,4π2)T2,图像应是一条通过原点的直线,如图所示,求出图线的斜率k,即可利用g=4π2k求重力加速度。6.误差分析产生原因减小方法偶然误差测量时间(单摆周期)及摆长时产生误差①多次测量求平均值②从摆球经过平衡位置时开始计时系统误差主要来源于单摆模型本身①摆球要选体积小,密度大的②最大摆角要小于5°7.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定。(2)单摆必须在同一平面内振动,且摆角小于5°。(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数。(4)小球自然下垂时,用毫米刻度尺量出悬线长l′,用游标卡尺测量小球的直径,然后算出摆球的半径r,则摆长l=l′+r。(5)一般选用1m左右的细线。考向1实验原理与操作1.某同学用单摆测定当地的重力加速度g。(1)如图所示,用游标卡尺测摆球直径。摆球直径d=mm。
(2)实验操作步骤如下:A.取一根细线,下端系住一个金属小球,上端固定在铁架台上;B.用米尺(最小刻度为1mm)测得摆线长l;C.在摆线偏离竖直方向较小夹角的位置由静止释放小球;D.用秒表记录小球完成n次全振动的总时间t,得到周期;E.改变摆线长,重复B、C、D的操作。该同学采用两种方法处理实验数据。第一种方法:根据每一组T和l,利用求出多组g值,然后计算g值的平均值,求得当地的重力加速度g。第二种方法:根据每一组T和l,在图3中描点,然后连线;根据图线的斜率,求出当地的重力加速度g。a.如果实验中测量摆线长l和单摆周期T的偶然误差都比较小,那么,第一种方法求出的重力加速度当地的重力加速度(选填“大于”、“等于”或“小于”);b.根据该同学在图2中描出的点,请在图中描绘出T2—l图线;c.该同学从图中求出图线斜率k,则重力加速度g与斜率k的关系式为g=;代入数据求得g=m/s2(结果保留3位有效数字)。
【答案】16.50小于
9.73(9.68~9.78)【详解】(1)[1]根据游标卡尺的读数规律,该读数为(2)a.[2]单摆的额摆长应为摆线长与摆球半径之和,第一种方法根据求出重力加速度时的l为摆线长,该长度小于摆长,因此第一种方法求出的重力加速度小于当地的重力加速度;b.[3]舍弃偏差较大的第二个点迹,用一条平滑的直线将其它点迹连接起来,尽量使点迹均匀分布在直线两侧,作出图像,如图所示
c.[4]令摆球直径为d,根据则有根据图像有解得[5]根据图像有解得考向2数据处理与误差分析2.甲、乙两同学利用单摆测定当地重力加速度。(1)甲同学用10分度的游标卡尺测量摆球的直径,如图所示,他测量的读数应该是cm。接着他正确测量了摆线长,加上摆球半径,得到了摆长l。(2)为了测定该单摆的振动周期T,下列做法中正确的是。A.将摆球拉离平衡位置一个小角度,从静止释放开始计时,小球第一次回到释放点停止计时,以这段时间作为周期B.将摆球拉离平衡位置一个小角度,从静止释放开始计时,小球第30次回到释放点停止计时,以这段时间除以30作为周期C.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次通过最低点时开始计时,并数为0,以后小球每次经过最低点时,他依次数为1、2、3……,数到60时停止计时,以这段时间除以30作为周期D.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次向右通过最低点时开始计时,并同时数30,以后小球每次向右经过最低点时,他依次计数为29、28、27……,数到0时停止计时,以这段时间除以30作为周期(3)他根据正确方法测出了摆长l和周期T,计算当地的重力加速度的表达式为g=。(4)甲同学用上述方法测量重力加速度g,你认为最需要改进的是。(5)乙同学没有测量摆球直径,只正确测得了摆线长为l,和对应的单摆振动周期为T。然后通过改变摆线的长度,共测得6组l和对应的周期T,计算出T2,作出l-T2图线,在图线上选取相距较远的A、B两点,读出与这两点对应的坐标,如图所示。乙同学计算重力加速度的表达式为g=。(6)乙同学没有测量摆球直径,把摆线长当成了摆长。你认为他这种做法会不会引起实验的系统误差(填“会”或“不会”)【答案】1.86CD需要改变摆长多做几次实验,测得多个g值,再取平均值作为实验结果不会【详解】(1)[1]测量的读数为(2)[2]A.将摆球拉离平衡位置一个小角度,应当小球第一次回到释放点停止计时,以这段时间作为周期,计时应该当小球通过最低点时开始计时,且不能只计一次,这样实验误差太大,故A错误;B.将摆球拉离平衡位置一个小角度,应当小球第一次回到释放点停止计时,故B错误;C.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次通过最低点时开始计时,并数为0,以后小球每次经过最低点时,他依次数为1、2、3……,数到60时停止计时,以这段时间除以30作为周期,做法正确,故C正确;D.将摆球拉离平衡位置一个小角度,从静止释放摆球,当小球某次向右通过最低点时开始计时,并同时数30,以后小球每次向右经过最低点时,他依次计数为29、28、27……,数到0时停止计时,以这段时间除以30作为周期,做法正确,故D正确。故选CD。(3)[3]根据单摆周期公式化解的(4)[4]需要改变摆长多做几次实验,测得多个g值,再取平均值作为实验结果(5)[5]根据单摆周期公式化解的将AB两点的数据代入可得,联立可得[6]根据可得可得即可知乙同学没有测量摆球直径,把摆线长当成了摆长。你认为他这种做法斜率不变,在用斜率计算重力加速度不会引起实验的系统误差。考点二创新实验方案知识点:(1)实验原理的改进:借助光敏电阻测时间(2)实验器材的改进:用杆线摆替代线摆考向1实验原理的改进1.某学习小组学习了单摆的相关知识后,想利用如图甲所示的装置测量当地的重力加速度。(1)赵同学找到实验室的光敏电阻等元件,利用如图乙所示装置记录振动周期,在摆球运动的最低点的左、右两侧分别放置一激光光源与光敏电阻,光敏电阻与某自动记录仪相连,该仪器显示的光敏电阻阻值R随时间t的变化图线如图丙所示,则该单摆的振动周期为s(结果保留四位有效数字)。(2)王同学则利用计算机绘制了a、b两个摆球的振动图像(如图丁所示),由图可知,两单摆摆长之比。(3)李同学每次用同一套实验装置,用同样的步骤进行实验,但所测得的重力加速度总是偏大,其原因可能是。A.开始计时时,过早按下秒表B.测周期记录全振动次数时,将n次全振动误记为次C.摆球的质量过大D.计算摆长时,只考虑悬线的长度,没有加上小球的半径【答案】2.000B【详解】(1)[1]单摆在一个周期内两次经过平衡位置,根据图线丙的变化规律可知,该单摆的周期为(2)[2]由图丁振动图线可知,两单摆的周期之比由公式,可得两单摆摆长之比(3)[3]根据题意,由单摆的周期公式可得A.开始计时时,过早按下秒表,周期的测量值偏大,则重力加速度的测量值偏小,故A错误;B.如果振动次教多数了一次,即偏小,偏大,故B正确;C.摆球的质量过大,不会影响单摆的周期与摆长,所以不影响重力加速度的测量,故C错误;D.算摆长时漏加小球半径,则偏小,求得的偏小,故D错误。故选B。考向2实验器材的创新2.同学们用如图所示的“杆线摆”研究摆的周期与等效重力加速度的关系。杆线摆可以绕着立柱来回摆动(立柱并不转动),使摆球的运动轨迹被约束在一个倾斜的平面内。具体操作步骤如下:(1)测量“斜面”的倾角。将铁架台放在水平桌面上,在铁架台立柱上绑上重垂线,调节杆线摆的线长,使重垂线与摆杆垂直。把铁架台底座的一侧垫高,使立柱倾斜。测出静止时摆杆与重垂线的夹角为,则“斜面”的倾角。(2)根据斜面倾角,求出等效重力加速度。(3)测量杆线摆的周期。尽量减小摆杆与立柱之间的摩擦,将摆拉开一个较小的角度,轻轻释放摆球。用停表测量摆球全振动次所用的时间,则单摆的周期为。(4)改变铁架台的倾斜程度,重复实验,将所需数据记录在表格中。序号(5)为了直观体现周期与等效重力加速度的关系,请在坐标纸中选择合适的物理量与单位,补全缺少的数据点并绘图。(6)通过图线,可以计算出在摆长一定的情况下,摆的周期与等效重力加速度的关系。若忽略球的尺寸,本实验中的摆长应为填“摆线”、“摆杆”的长度,摆长为结果保留位有效数字。【答案】摆杆【详解】(1)[1]摆杆与重垂线的夹角为为摆杆与水平方向的夹角,根据几何关系可知(3)[2]根据摆球全振动的次数和所用时间,周期(5)[3]根据题图可知等效重力加速度为根据单摆周期公式有在图中以周期为纵坐标轴、以为横坐标轴建立坐标系,根据表格中相应的各组数据在坐标系中描点、作图如图所示:(6)[4][5]本实验的摆长为摆杆;由上述图像图像的斜率结合图像函数可知解得考向3实验思路的创新3.某实验小组用铁架台、长约1m的细绳、直径约为1cm的金属球、米尺、位移传感器、数据采集器和电脑等器材测量重力加速度。实验过程如下:(1)用游标卡尺测量小球直径d,示数如图甲所示,其示数为mm;(2)按图乙安装实验装置。当摆球静止时,测出摆长L。将摆球拉开一角度后释放,摆球做简谐运动时,位移传感器记录摆球摆动过程中位移x随时间t变化的关系,其中的一段图像如图丙所示,则此单摆的周期T=s;(3)改变摆长,重复步骤(2),测得多组数据(L,T),利用计算机作出T2-L图像,根据图像得到,则当地重力加速度大小为g=m/s2;(结果保留三位有效数字)
(4)下列说法正确的是(填选项前的字母)。A.选择密度较小的摆球,测得的g值误差较小B.把摆球从平衡位置拉开30°角后释放,重复步骤(2),仍能测出单摆周期C.用悬线的长度加摆球直径作为摆长,代入计算得到的g值偏大【答案】10.201.69.86BC/CB【详解】(1)[1]游标卡尺示数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 读《热爱生命》有感15篇
- 2021安全环保工作总结范文大全
- 幼儿园大班班务工作计划(15篇)
- 中班社会安全乘车
- 电气设计2019年终工作总结
- 小学生路队规范安全教育
- 试用期员工转正的工作总结
- 护士培训心得体会
- 中班安全课件
- 社会调查报告(15篇)
- 高低压电气及成套设备装配工(中级)技能鉴定理论考试题库及答案
- 意识形态分析研判制度
- 《幂函数》说课稿
- 仓库租赁、物资仓储保管服务投标方案(技术方案)
- 环境保护企业绿色发展技术创新
- 透析失衡综合征护理常规
- 2024高考数学艺体生一轮复习讲义-集合解析版
- 2024秋国家开放大学“开放本科”行管专业《管理英语4》期末考试真题12试
- 前程无忧行测笔试题库
- 统编版(2024年新教材)七年级上册语文第五单元学业质量测试卷(含答案)
- 空调水系统管道水压试验记录
评论
0/150
提交评论