版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省彭州市彭州中学2025届高一上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且,当且时.已知,若对恒成立,则的取值范围是()A. B.C. D.2.在平面直角坐标系中,若角的终边经过点,则()A. B.C. D.3.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.已知函数则函数值域是()A. B.C. D.5.已知三棱锥D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,则该三棱锥的外接球的表面积为()A.π B.6πC.5π D.8π6.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.7.学校操场上的铅球投郑落球区是一个半径为米的扇形,并且沿着扇形的弧是长度为约米的防护栏,则扇形弧所对的圆心角的大小约为()A. B.C. D.8.已知,,且,,,那么的最大值为()A. B.C.1 D.29.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.10.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为__________12.已知定义域为的奇函数,则的解集为__________.13.不等式的解集为_________________.14.若向量与共线且方向相同,则___________15.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________16.设为三个随机事件,若与互斥,与对立,且,,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求函数的定义域、值域与单调区间;18.已知函数f(x)=2cos.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及取得最大值时自变量x的取值集合;(3)求函数f(x)的单调增区间19.已知.(1)求的值(2)求的值.20.有两直线和,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值21.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)求圆C的标准方程;(2)求圆C在点B处的切线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由奇偶性分析条件可得在上单调递增,所以,进而得,结合角的范围解不等式即可得解.【详解】因为是定义在上的奇函数,所以当且时,根据的任意性,即的任意性可判断在上单调递增,所以,若对恒成立,则,整理得,所以,由,可得,故选:A.【点睛】关键点点睛,本题解题关键是利用,结合变量的任意性,可判断函数的单调性,属于中档题.2、A【解析】根据三角函数定义求解即可.【详解】角的终边经过点,即,则.故选:A.3、D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.4、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B5、B【解析】由题意结合平面几何、线面垂直的判定与性质可得BC⊥BD,AD⊥AC,再由平面几何的知识即可得该几何体外接球的球心及半径,即可得解.【详解】AB=BC=1,AD=2,BD=,AC=,∴,,∴DA⊥AB,AB⊥BC,由BC⊥AD可得BC⊥平面DAB,DA⊥平面ABC,∴BC⊥BD,AD⊥AC,∴CD=,由直角三角形的性质可知,线段CD的中点O到点A,B,C,D的距离均为,∴该三棱锥外接球的半径为,故三棱锥的外接球的表面积为4π=6π.故选:B.【点睛】本题考查了三棱锥几何特征的应用及其外接球表面积的求解,考查了运算求解能力与空间思维能力,属于中档题.6、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.7、A【解析】直接由弧长半径圆心角的公式求解即可.【详解】根据条件得:扇形半径为10,弧长为6,所以圆心角为:.故选:A.8、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:9、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C10、D【解析】根据题意先得到,,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】所以,当,即时,取得最小值.所以答案应填:.考点:1、对数的运算;2、二次函数的最值.12、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:13、或.【解析】利用一元二次不等式的求解方法进行求解.【详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.14、2【解析】向量共线可得坐标分量之间的关系式,从而求得n.【详解】因为向量与共线,所以;由两者方向相同可得.【点睛】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.15、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用16、【解析】由与对立可求出,再由与互斥,可得求解.【详解】与对立,,与互斥,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、定义域为,值域为,递减区间为,递增区间为.【解析】由函数的解析式有意义列出不等式,可求得其定义域,由,结合基本不等式,可求得函数的值域,令,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【详解】由题意,函数有意义,则满足且,因为方程,所以,解得,所以函数的定义域为又由,因为,所以,当且仅当时,即时,等号成立,所以,所以函数的值域为,令,根据对勾函数的性质,可得函数在区间上单调递减,在上单调递增,结合复合函数的单调性的判定方法,可得在上单调递减,在上单调递增.18、(1)(2)当时,取得最大值为.(3)【解析】(1)根据三角函数最小正周期公式求得正确答案.(2)根据三角函数最大值的求法求得正确答案.(3)利用整体代入法求得的单调递增区间.【小问1详解】的最小正周期为.【小问2详解】当时,取得最大值为.【小问3详解】由,解得,所以的单调递增区间为.19、(1)(2)【解析】(1)由两边平方可得,利用同角关系;(2)由(1)可知从而.【详解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【点睛】本题考查三角函数化简求值,涉及同角三角函数基本关系和整体代入的思想,属于中档题20、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题21、(1)(2)【解析】(1)做辅助线,利用勾股定理,计算BC的长度,然后得出C的坐标,结合圆的方程,即可得出答案.(2)利用直线垂直,斜率之积为-1,计算切线的斜率,结合点斜式,得到方程.【详解】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论