广西贵港市覃塘高级中学2025届高一上数学期末调研试题含解析_第1页
广西贵港市覃塘高级中学2025届高一上数学期末调研试题含解析_第2页
广西贵港市覃塘高级中学2025届高一上数学期末调研试题含解析_第3页
广西贵港市覃塘高级中学2025届高一上数学期末调研试题含解析_第4页
广西贵港市覃塘高级中学2025届高一上数学期末调研试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西贵港市覃塘高级中学2025届高一上数学期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到2.若,,,则有A. B.C. D.3.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.4.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和5.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.6.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间(分)的函数关系表示的图象只可能是()A. B.C. D.7.已知角的终边经过点,则().A. B.C. D.8.若,则有()A.最大值 B.最小值C.最大值2 D.最小值29.已知函数的值域为,则实数m的值为()A.2 B.3C.9 D.2710.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点个数为___12.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.13.已知向量,,若,,,则的值为__________14.已知函数在上的最大值为2,则_________15.在中,已知是x的方程的两个实根,则________16.已知向量,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)判断并说明函数的奇偶性;(2)若关于的不等式恒成立,求实数的取值范围18.已知的三个顶点为,,.(1)求边所在直线的方程;(2)若边上的中线所在直线的方程为,且,求的值.19.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x(1)已知函数f(x)=sin(x+π3)(2)设f(x)=2x+m是定义在[-1,1]上的“M(3)若f(x)=log2(x220.设函数是增函数,对于任意都有(1)写一个满足条件的;(2)证明是奇函数;(3)解不等式21.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【详解】解:函数,将函数图象向左平移个单位可得的图象故选:2、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.3、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值4、B【解析】根据样本容量和其它各组的频数,即可求得答案.【详解】由题意可得:第3组频数为,故第3组的频率为,故选:B5、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.6、A【解析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下相同的体积,当时间取分钟时,液面下降的高度与漏斗高度的比较.【详解】由于所给的圆锥形漏斗上口大于下口,当时间取分钟时,液面下降的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A【点睛】本题主要考查了函数图象的判断,常利用特殊值和函数的性质判断,属于中档题.7、A【解析】根据三角函数的概念,,可得结果.【详解】因为角终边经过点所以故选:A【点睛】本题主要考查角终边过一点正切值的计算,属基础题.8、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.9、C【解析】根据对数型复合函数的性质计算可得;【详解】解:因为函数的值域为,所以的最小值为,所以;故选:C10、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.12、12【解析】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,则.故答案为:12.13、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题14、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:115、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.16、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为奇函数(2)【解析】(1)利用函数的奇偶性判断即可;(2)由(1)知为奇函数且单调递增,将不等式恒成立分离参数,利用基本不等式解得即可.【详解】(1)函数的定义域为,,所以为奇函数.(2)由(1)知奇函数且定义域为,易证在上单调递增,所以不等式恒成立,转化,即对恒成立,所以对恒成立,即,因,则,所以,即,所以,故实数的取值范围为.【点睛】本题考查函数奇偶性的定义,以及利用奇偶性,单调性解不等式恒成立问题,属于中档题.18、(Ⅰ);(Ⅱ)或【解析】Ⅰ由斜率公式可得,结合点斜式方程整理计算可得BC边所在直线方程为.Ⅱ由题意可得,则△ABC的BC边上的高,据此由点到直线距离公式和直线方程得到关于m,n的方程组,求解方程组可得,或,.【详解】Ⅰ,,.,可得直线BC方程为,化简,得BC边所在直线方程为.Ⅱ由题意,得,,解之得,由点到直线的距离公式,得,化简得或,或.解得,或,.【点睛】本题主要考查直线方程的求解,点到直线距离公式的应用,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.19、(1)函数f(x)=sin(x+π3)是“M【解析】(1)由f(-x)=-f(x),得sin(-x+π3)=-(2)由题存在实数x0∈[-1,1]满足f(-x0)=-f(x0),即方程2xm取最小值-(3)由题即存在实数x0,满足f(-x0)=-f(x0)试题解析:(1)由f(-x)=-f(x),得:sin所以3所以存在x0=所以函数f(x)=sin(x+π(2)因为f(x)=2x+m是定义在[-1,1]所以存在实数x0∈[-1,1]满足即方程2x+2令t=则m=-12(t+1t),因为所以当t=12或t=2时,m(3)由x2-2mx>0对x≥2因为若f(x)=log2(所以存在实数x0,满足①当x0≥2时,-x0因为函数y=12x-4②当-2<x0<2时,-2<-③当x0≤-2时,-x0因为函数y=-12综上所述,实数m的取值范围是[-1,1)点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数图像,然后数形结合求解.20、(1),(2)见解析(3)【解析】(1)满足是增函数,对于任意都有的函数(2)利用函数的奇偶性的定义转化求解即可(3)利用已知条件转化不等式,通过函数的单调性转化求解即可【小问1详解】因为函数是增函数,对于任意都有,这样的函数很多,其中一种为:,证明如下:函数满足是增函数,,所以满足题意.【小问2详解】令,则由得,即得,故是奇函数【小问3详解】,所以,则,因为,所以,所以,又因为函数是增函数,所以,所以或.所以的解集为:.21、(1)(2)答案不唯一,具体见解析【解析】(1)利用参变量分离法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论