湖北省郧阳中学2025届高二数学第一学期期末联考试题含解析_第1页
湖北省郧阳中学2025届高二数学第一学期期末联考试题含解析_第2页
湖北省郧阳中学2025届高二数学第一学期期末联考试题含解析_第3页
湖北省郧阳中学2025届高二数学第一学期期末联考试题含解析_第4页
湖北省郧阳中学2025届高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省郧阳中学2025届高二数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.2.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.23.设命题,则为A. B.C. D.4.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.5.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等6.已知平面的一个法向量为,则x轴与平面所成角的大小为()A. B.C. D.7.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.8.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.19.一物体做直线运动,其位移(单位:)与时间(单位:)的关系是,则该物体在时的瞬时速度是A. B.C. D.10.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.3211.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.12.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为______.14.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.15.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.16.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为18.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的标准方程;(2)已知,经过点的直线与椭圆交于、两点,若原点到直线的距离为,且,求直线的方程.19.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.20.(12分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题21.(12分)已知等差数列满足,(1)求的通项公式;(2)若等比数列的前n项和为,且,,,求满足的n的最大值22.(10分)已知圆C:x2+y2+2ax﹣3=0,且圆C上存在两点关于直线3x﹣2y﹣3=0对称.(1)求圆C的半径r;(2)若直线l过点A(2,),且与圆C交于MN,两点,|MN|=2,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.2、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.3、C【解析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.4、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.5、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.6、C【解析】依题意可得轴的方向向量可以为,再利用空间向量法求出线面角的正弦值,即可得解;【详解】解:依题意轴的方向向量可以为,设x轴与平面所成角为,则,因为,所以,故选:C7、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B8、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A9、A【解析】先对求导,然后将代入导数式,可得出该物体在时的瞬时速度【详解】对求导,得,,因此,该物体在时的瞬时速度为,故选A【点睛】本题考查瞬时速度的概念,考查导数与瞬时变化率之间的关系,考查计算能力,属于基础题10、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C11、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C12、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.14、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.15、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:16、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由已知得,当时,两式作差整理得,根据等比数列的定义可得证;(2)由(1)求得,,再运用错位相减法可求得答案.【小问1详解】证明:因为,……①,所以当时,,当时……②,则①-②可得,所以,因为,所以数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,即,因为所以,则……①,①得……②,①-②得,所以.18、(1);(2).【解析】(1)由已知条件可得出关于、、的方程组,求出这三个量的值,由此可得出椭圆的标准方程;(2)分析可知直线的斜率存在且不为零,设直线的方程为,由点到直线的距离公式可得出,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,代入韦达定理求出、的值,由此可得出直线的方程.【详解】(1)设椭圆的焦距为,则,解得,因此,椭圆的标准方程为;(2)若直线斜率不存在,则直线过原点,不合乎题意.所以,直线的斜率存在,设斜率为,设直线方程为,设、,原点到直线的距离为,,即①.联立直线与椭圆方程可得,则,则,由韦达定理可得,.,则为线段的中点,所以,,,得,,所以,,整理可得,解得,即,,因此,直线的方程为或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.19、(1)(2)或【解析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.20、(1)(2)【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题(2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计算公司求得“甲、乙两人中至少有一人抽到选择题【详解】把3个选择题因此基本事件的总数为.(1)记“甲抽到选择题(2)记“甲、乙两人至少有一人抽到选择题【点睛】本小题主要考查互斥事件概率计算,考查对立事件,属于基础题.21、(1)(2)10【解析】(1)设等差数列公差为d,根据已知条件列关于和d的方程组即可求解;(2)设等比数列公比为q,根据已知条件求出和q,根据等比数列求和公式即可求出,再解关于n的不等式即可.【小问1详解】由题意得,解得,∴【小问2详解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值为1022、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根据对称性可知直线m过圆心C.代入后可求a,进而可求半径;(2)先求出圆心到直线l的距离,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论