已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、常用函数的麦克劳林展开式第3节一、泰勒定理应用目的-用多项式近似表示函数.理论分析近似计算泰勒定理与应用
第3章特点:一、泰勒公式的建立以直代曲在微分应用中已知近似公式:需要解决的问题如何提高精度?如何估计误差?x
的一次多项式1.求
n
次近似多项式要求:故令则2.余项估计令(称为余项),则有公式①称为的n
阶泰勒公式
.公式②称为n
阶泰勒公式的拉格朗日余项
.泰勒(Taylor)中值定理:阶的导数,时,有①其中②则当泰勒公式③称为n
阶泰勒公式的皮亚诺(Peano)
余项
.在不需要余项的精确表达式时,泰勒公式可写为注意到③④*
可以证明:④式成立特例:(1)当n=0
时,泰勒公式变为(2)当n=1
时,泰勒公式变为给出拉格朗日中值定理可见误差称为麦克劳林(Maclaurin)公式.则有在泰勒公式中若取则有误差估计式若在公式成立的区间上麦克劳林由此得近似公式二、几个初等函数的麦克劳林公式其中麦克劳林公式其中麦克劳林公式麦克劳林公式类似可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论