湖南师大附中博才实验中学2025届数学九上开学预测试题【含答案】_第1页
湖南师大附中博才实验中学2025届数学九上开学预测试题【含答案】_第2页
湖南师大附中博才实验中学2025届数学九上开学预测试题【含答案】_第3页
湖南师大附中博才实验中学2025届数学九上开学预测试题【含答案】_第4页
湖南师大附中博才实验中学2025届数学九上开学预测试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖南师大附中博才实验中学2025届数学九上开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD中,点O为对角线的交点,点E为CD上一点,沿BE折叠,点C恰好与点O重合,点G为BD上的一动点,则EG+CG的最小值m与BC的数量关系是()A.m=BC B.m=BC C.m=BC D.2m=BC2、(4分)函数与在同一坐标系内的图像可能是()A. B.C. D.3、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.164、(4分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A.36 B.45 C.48 D.505、(4分)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A. B. C. D.6、(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1 B.4S2 C.4S2+S3 D.3S1+4S37、(4分)如图,矩形ABCD的两条对角线交于点O,若,,则AC等于()A.8 B.10 C.12 D.188、(4分)一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数 B.中位数 C.众数 D.方差二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.10、(4分)分解因式:______.11、(4分)已知,那么________.12、(4分)如图所示,在四边形中,,分别是的中点,,则的长是___________.13、(4分)关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知等腰三角形的底边长为10,点是上的一点,其中.(1)求证:;(2)求的长.15、(8分)关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.16、(8分)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE求证:四边形BECD是矩形.17、(10分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?18、(10分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在矩形中,点在对角线上,过点作,分别交,于点,,连结,.若,,图中阴影部分的面积为,则矩形的周长为_______.20、(4分)某校对n名学生的体育成绩统计如图所示,则n=_____人.21、(4分)如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.22、(4分)已知b是a,c的比例中项,若a=4,c=16,则b=________.23、(4分)如图,在平面直角坐标系中,矩形的边一条动直线分别与将于点,且将矩形分为面积相等的两部分,则点到动直线的距离的最大值为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.(1)求证:△ADF≌△DCE;(2)求GH的长.25、(10分)如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点E、G、H分别在正方形的边AB、CD、DA上,AH=1,联结CF.(1)当DG=1时,求证:菱形EFGH为正方形;(2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;(3)当DG=时,求∠GHE的度数.26、(12分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足条件_____________________时,四边形ADEG是矩形.②当△ABC满足条件_____________________时,四边形ADEG是正方形?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

是等边三角形,延长交于,连接交于,连接,由题意、关于对称,推出,当、、共线时,的值最小,最小值为的长.【详解】如图,由题意,,是等边三角形,延长交于,连接交于,连接,由题意、关于对称,,当、、共线时,的值最小,最小值为的长,设,,在中,,,,在中,,,,.故选:.本题考查轴对称-最短问题,翻折变换,矩形的性质等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.2、B【解析】

分k>0与k<0两种情况分别进行讨论即可得.【详解】当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,故选B.本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.3、A【解析】试题分析:在Rt△ABC中,∵∠ABC=30°,∴AC=12∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于8,∴AC•BE=8,即4BE=8,∴BE=1,即平移距离等于1.故选A.考点:平移的性质.4、D【解析】

根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【详解】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选D.考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.5、B【解析】试题解析:因为AB=3,AD=4,所以AC=5,,由图可知,AO=BO,则,因此,故本题应选B.6、A【解析】

设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,∴S1=12a平行四边形的面积=2S1+2S2+S3=a故答案选A.考点:直角三角形的面积.7、C【解析】

先根据矩形的性质得出,再利用直角三角形的性质即可得.【详解】四边形ABCD是矩形在中,,则故选:C.本题考查了矩形的性质、直角三角形的性质,掌握矩形的性质是解题关键.8、D【解析】

依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的2、3、3、4的平均数为2+3+3+44=3,中位数为3+32=3,众数为3,方差为14×[(2–3)2+(3–3)2×2+(4–3)新数据2、3、3、3、4的平均数为2+3+3+3+45=3,中位数为3,众数为3,方差为15×[(2–3)2+(3–3)2×3+(4–3)2∴添加一个数据3,方差发生变化.故选:D.考查平均数、中位数、众数、方差,掌握平均数、中位数、众数、方差的计算方法是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、30°【解析】

解:∵四边形ABCD是矩形,

∴∠B=90°,

∵E为边AB的中点,

∴AE=BE,

由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,

∴AE=FE,

∴∠EFA=∠EAF=75°,

∴∠BEF=∠EAF+∠EFA=150°,

∴∠CEB=∠FEC=75°,

∴∠FCE=∠BCE=90°-75°=15°,

∴∠BCF=30°,

故答案为30°.本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.10、【解析】

先提取公共项y,然后观察式子,继续分解【详解】本题考查因式分解,掌握因式分解基本方法是解题关键11、【解析】

直接利用已知得出,进而代入求出答案.【详解】解:∵,∴,∴.故答案为:.此题主要考查了代数式的化简,正确用b代替a是解题关键.12、【解析】

根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.【详解】解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,

∴PN,PM分别是△CDB与△DAB的中位线,

∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,

∵AB=CD,

∴PM=PN,

∴△PMN是等腰三角形,

∵PM∥AB,PN∥DC,

∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,

∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,

∴∠PMN==30°.过P点作PH⊥MN,交MN于点H.∵HQ⊥MN,

∴HQ平分∠MHN,NH=HM.

∵MP=2,∠PMN=30°,

∴MH=PM•cos60°=,

∴MN=2MH=2.本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.13、m≤1【解析】

根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【详解】解:由题意知,△=4﹣4m≥0,∴m≤1,故答案为m≤1.此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2).【解析】

(1)根据勾股定理的逆定理证得△BCD为直角三角形即可;(2)设AB=x,则AD=x-6,在Rt△ABD中,根据勾股定理建立方程,解出方程即可.【详解】(1)证明:∵∵为直角三角形,∴,∴;(2)解:设为,则∵,∴,在中,即,解得∴.故答案为(1)见解析;(2).本题考查了勾股定理及其逆定理.15、(1)m>﹣34且m≠﹣12;(2【解析】

(1)根据方程有两个不相等的实数根结合根的判别式以及二次项系数不为0,即可得出关于m的一元一次不等式组,解不等式组即可得出结论;(2)利用根与系数的关系即可求解.【详解】(1)∵方程有2个不相等的实数根,∴△>0,即16m2﹣4×(2m+1)(2m﹣3)>0,解得:m>-3又2m+1≠0,∴m≠-1∴m>-34且m≠(2)∵x1+x2=-4m2m+1、x1x2=∴1x1+由1x1+1x解得:m=-3∵-3∴不存在.本题考查了根的判别式,解题关键是根据方程解的个数结合二次项系数不为0得出关于m的一元一次不等式组.16、证明见解析【解析】

根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【详解】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.17、(1)S甲=0.5t;S乙=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米;【解析】分析:设出函数解析式,用待定系数法求解即可.代入中的函数解析式即可求出.详解:(1)由图象设甲的解析式为:S甲=kt,代入点,解得:k=0.5;所以甲的解析式为:S甲=0.5t;同理可设乙的解析式为:S乙=mt+b,代入点可得:解得:,所以乙的解析式为S乙(2)当t=10时,S甲=0.5×10=5(千米),S乙=10-6=4(千米),5-4=1(千米),答:甲行驶10分钟后,甲、乙两人相距1千米.点睛:考查一次函数的应用,掌握待定系数法求一次函数解析式是解题的关键.18、小明的速度为80米/分.【解析】试题分析:设出小明和爸爸的速度,利用时间作为等量关系列方式方程解应用题.试题解析:设小明的速度是x米/分,爸爸的速度是2x米/分,由题意得解得x=80,经检验,x=80是方程的根,所以小明的速度是80米/分.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

作PM⊥AD于M,交BC于N,进而得到四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,继而可证明S△PEB=S△PFD,然后根据勾股定理及完全平方公式可求,,进而求出矩形的周长.【详解】解:作PM⊥AD于M,交BC于N,

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE,且S△DFP+S△PBE=9,∴,且,∴,即,.∵,,∴,,∴,∴矩形ABCD的周长=2=.故答案为:.本题考查了矩形的性质,勾股定理,完全平方公式,三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.20、1【解析】

根据统计图中的数据,可以求得n的值,本题得以解决.【详解】解:由统计图可得,n=20+30+10=1(人),故答案为:1.本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.21、.【解析】

利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.【详解】解:如图,设直线OC与直线AB的交点为点D,一次函数的图象与x轴、y轴分别交于点A、B,、,,,,将沿直线AB翻折得到,,,.故答案是:.考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.22、±8【解析】

根据比例中项的定义即可求解.【详解】∵b是a,c的比例中项,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案为±8此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.23、【解析】

设M,N为CO,EF中点,点到动直线的距离为ON,求解即可.【详解】∵∴SOABC=12∵将矩形分为面积相等的两部分∴SCEOF=×(CE+OF)×2=6∴CE+OF=6设M,N为CO,EF中点,∴MN=3点到动直线的距离的最大值为ON=故答案.本题考查的是的动点问题,熟练掌握最大距离的算法是解题的关键二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)【解析】

(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°,∵DF=CE,∴△ADF≌△DCE(SAS);(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,∵∠DAF+∠DFA=90°,∴∠CDE+∠DFA=90°,∴∠DGF=90°,∴∠AGE=90°,∵AB=BC=6,EC=2,∴BE=4,∵∠B=90°,∴AE==,∵点H为AE的中点,∴GH=.本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.25、(2)详见解析;(2)(3)60°【解析】

(2)先求出HG,再判断出△AHE≌△DGH,得出∠AHE=∠DGH,进而判断出∠GHE=90∘,即可得出结论;(2)先判断出∠HEA=∠FGM,进而判断出△AHE≌△MFG.得出FM=HA=2,即可得出结论;(3)利用勾股定理依次求出GH=,AE=,GE=,进而判断出GH=HE=GE,即可得出结论【详解】解:(2)在正方形ABCD中,∵AH=2,∴DH=2.又∵DG=2,∴HG=在△AHE和△DGH中,∵∠A=∠D=90°,AH=DG=2,EH=HG=,∴△AHE≌△DGH,∴∠AHE=∠DGH.∵∠DGH+∠DHG=90°,∠AHE+∠DHG=90°.∴∠GHE=90°所以菱形EFGH是正方形;(2)如图2,过点F作FM⊥DC交DC所在直线于M,联结GE.∵AB∥CD,∴∠AEG=∠MGE.∵HE∥GF,∴∠HEG=∠FGE.∴∠HEA=∠FGM,在△AHE和△MFG中,∵∠A=∠M=90°,EH=GF.∴△AHE≌△MFG.∴FM=HA=2.即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,∴y=GC•FM=(3﹣x)×2=﹣x+(0≤x≤);(3)如图2,当DG=时,在Rt△HDG中,DH=2,根据勾股定理得,GH=;∴HE=GH=,在Rt△AEH中,根据勾股定理得,AE=,过点G作GN⊥AB于N,∴EN=AE﹣DG=在Rt△ENG中,根据勾股定理得,GE=∴GH=HE=GE,∴△GHE为等边三角形.∴∠GHE=60°.此题考查正方形的判定,全等三角形的性质与判断,勾股定理,解题关键在于作辅助线26、(1)见解析;(2)见解析;(3)①∠BAC=135°;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论