统考版2024高考数学二轮专题复习专题四统计与概率第2讲概率随机变量及其分布列课件理_第1页
统考版2024高考数学二轮专题复习专题四统计与概率第2讲概率随机变量及其分布列课件理_第2页
统考版2024高考数学二轮专题复习专题四统计与概率第2讲概率随机变量及其分布列课件理_第3页
统考版2024高考数学二轮专题复习专题四统计与概率第2讲概率随机变量及其分布列课件理_第4页
统考版2024高考数学二轮专题复习专题四统计与概率第2讲概率随机变量及其分布列课件理_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2讲概率、随机变量及其分布列考点一考点二考点三考点四考点一古典概型与几何概型——构建模型,合理分类

答案:C

答案:C

2.解几何概型的步骤(1)“定变量”,根据事件发生的过程确定事件中的相关变量,确定变量的取值范围;(2)“观图形”,根据变量的取值范围,画出基本事件所包含的图形和所求事件对应的图形;(3)“求度量”,根据图形的直观性,结合变量的取值范围,求出相应图形的几何度量;(4)“求概率”,把所求得的几何度量代入几何概型的概率计算公式,即可求出概率.提醒对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.

答案:C

答案:B

考点二相互独立事件和独立重复试验——正难则反

例2

11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解析:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.归纳总结求相互独立事件的概率的两种方法直接法正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.间接法当复杂事件正面情况较多,反面情况较少时,可利用其对立事件进行求解.对于“至少”

“至多”等问题往往也用这种方法求解.

答案:C

考点三离散型随机变量的分布列、均值与方差考点三离散型随机变量的分布列、均值与方差——综合各类概率,活用分布模型离散型随机变量的均值与方差(1)均值与方差的性质①E(aX+b)=aE(X)+b;②D(aX+b)=a2D(X)(a,b为实数).(2)两点分布与二项分布的均值、方差①若X服从两点分布,则E(X)=p,D(X)=p(1-p);②若X~B(n,p),则E(X)=np,D(X)=np(1-p).例3[2023·辽宁大连测试]某校辩论队计划在周六、周日各参加一场辩论赛,分别由正、副队长负责,已知该校辩论队共有10位成员(包含正、副队长),每场比赛除负责人外均另需3位队员(同一队员可同时参加两天的比赛,正、副队长只能参加一场比赛).假设正、副队长分别将各自比赛通知的信息独立、随机地发给辩论队8名队员中的3位,且所发信息都能收到.(1)求辩论队员甲收到正队长或副队长所发比赛通知信息的概率;(2)记辩论队收到正队长或副队长所发比赛通知信息的队员人数为随机变量X,求X的分布列及其数学期望.

X3456P归纳总结计算期望与方差的基本方法(1)已知随机变量的概率分布求它的期望、方差和标准差,可直接用定义或公式求.(2)已知随机变量X的期望、方差,求X的线性函数Y=aX+b的期望、方差和标准差,可直接用期望及方差的性质求.(3)若能分析出所给随机变量服从常用的分布(如两点分布、二项分布等),则可直接利用它们的期望、方差公式来求.考点四概率与统计的综合应用——准确审题,数据分析考点四概率与统计的综合应用——准确审题,数据分析概率与统计问题在近几年的高考中背景取自现实,题型新颖,综合性增强,难度加深,掌握此类问题的解题策略,在高考中才能游刃有余.归纳总结破解频率分布直方图与概率相交汇问题的步骤角度2概率与统计案例的交汇问题

5[2023·河南开封]大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A,B两块试验田上进行实验(两地块的土质等情况一致).6月25日在A试验田播种该品种大豆,7月10日在B试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[100,150),[150,200),[200,250]进行分组,得到如下表格:把千粒质量不低于200克的大豆视为籽粒饱满,否则视为籽粒不饱满.

[100,150)[150,200)[200,250]A试验田/份3611B试验田/份6104

P(K2≥k0)0.150.100.050.0250.0100.001k02.0722.7063.8415.0246.63510.828

6月25日播种7月10日播种合计饱满11415不饱满91625合计202040

归纳总结解决概率、统计与其他知识的综合角度3概率、统计与数列的交汇例6第24届冬奥会于2022年在中国北京和张家口举行,届时,北京将成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及亚洲运动会三项国际赛事的城市.在某次滑雪表演比赛中,抽取部分参赛队员的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,并按照[60,70),[70,80),[80,90),[90,100](已知分数在[90,100]内的人数为3)的分组作出如图所示的频率分布直方图.据此解答如下问题:(1)求样本容量n及频率分布直方图中a的值.(2)滑雪场馆内的一销售网点为了吸引游客,增加营业收入,开展“参加游戏赢奖券”促销活动,购物满200元可以参加1次游戏,游戏规则如下:有一张共7格的方格图,依次编号为第1格、第2格、第3格、…、第7格,游戏开始时“跳子”在第1格,参与者需从一个口袋(装有除颜色外完全相同的2个黑球和2个白球)中任取两个球,若两个球颜色不同,则“跳子”前进1格(即从第1格到第2格),若两个球颜色相同,则“跳子”前进2格(即从第1格到第3格),当“跳子”前进到第6格或者第7格时,游戏结束.“跳子”落在第6格可以得到30元奖券,“跳子”落在第7格可以得到90元奖券.记“跳子”前进到第n格(1≤n≤7)的概率为Pn.①证明:{Pn-Pn-1}(2≤n≤6)是等比数列.②求某一位顾客参加一次这样的游戏获得的奖券金额的期望.

X3090P归纳总结破解此题的关键是将概率的参数表达式与数列的递推式相结合,可得数列的通项公式,此种解法新颖独特.对点训练[2023·四川省泸县第二中学]中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了50名学生进行调查,调查样本中有20名女生.如图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).(1)完成上面的2×2列联表,判断是否有95%的把握认为对“嫦娥五号”的关注程度与性别有关?

关注没关注合计男

合计

关注没关注合计男151530女61420合计212950

P(K2≥k0)0.1500.1000.0500.0100.005k02.0722.7063.8416.6357.879

X0123P[高考5个大题]解题研诀窍(四)概率与统计问题重在“辨”——辨析、辨型[思维流程——找突破口]

[典例]

某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

[快审题]求什么想什么求f(p)的最大值点,想到f(p)的表达式.求E(X)的值,想到X的可能取值及所对应的概率、均值的性质.给什么用什么给出检验费及赔偿费可计算E(X).差什么找什么计算E(X),应找出X与不合格产品件数的关系,利用均值性质求解.

(2)由(1)知,p=0.1,①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元,由于E(X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论