版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市北郊高级中学2025届高二数学第一学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.2.阅读如图所示的程序框图,运行相应的程序,输出S的结果是()A.128 B.64C.16 D.323.双曲线的左、右焦点分别为、,点P在双曲线右支上,,,则C的离心率为()A. B.2C. D.4.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.5.执行如图所示的程序框图,则输出的的值是()A. B.C. D.6.曲线:在点处的切线方程为A. B.C. D.7.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数8.已知双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C. D.9.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势10.若函数在区间上有两个极值点,则实数的取值范围是()A. B.C. D.11.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.12.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则_________.14.数列的前项和为,则_________________.15.为和的等差中项,则_____________.16.已知数列的前项和为,,则___________,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.18.(12分)求满足下列条件的曲线的方程:(1)离心率为,长轴长为6的椭圆的标准方程(2)与椭圆有相同焦点,且经过点的双曲线的标准方程19.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.20.(12分)设数列的前n项和为,且满足.(1)证明为等比数列,并求数列通项公式;(2)在(1)的条件下,设,求数列的前项和.21.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.22.(10分)设:,:.(1)若命题“,是真命题”,求的取值范围;(2)若是的充分不必要条件,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.2、C【解析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果.【详解】根据流程图的执行逻辑,其执行步骤如下:1、成立,则;2、成立,则;3、成立,则;4、成立,则;5、不成立,输出;故选:C3、C【解析】由,所以为直角三角形,根据双曲线的定义结合勾股定理可得答案.【详解】由,所以为直角三角形.,根据双曲线的定义可得所以,即,即,所以故选:C4、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.5、C【解析】由题意确定流程图的功能,然后计算其输出值即可.【详解】运行程序,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,满足,利用裂项求和可得:.故选:C.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目的要求完成解答并验证6、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A7、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.8、B【解析】由双曲线的渐近线方程以及即可求得离心率.【详解】由已知条件得,∴,∴,∴,∴,故选:.9、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.10、D【解析】由题意,即在区间上有两个异号零点,令,利用函数的单调性与导数的关系判断单调性,数形结合即可求解【详解】解:由题意,即在区间上有两个异号零点,构造函数,则,令,得,令,得,所以函数在上单调递增,在上单调递减,又时,,时,,且,所以,即,所以的范围故选:D11、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.12、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可知即数列是首项为1,公差为1的等差数列,进而可求得数列的通项公式,即可求.【详解】由题意知:,即,而,∴数列是首项为1,公差为1的等差数列,有,∴,则.故答案为:【点睛】关键点点睛:由递推关系求数列的通项,进而得到的通项公式写出项.14、【解析】利用计算可得出数列的通项公式.【详解】当时,;而不适合上式,.故答案:.15、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.16、①.②.【解析】第一空:由,代入已知条件,即可解得结果;第二空:由与关系可推导出之间的关系,再由递推公式即可求出通项公式.【详解】,可得由,可知时,故时即可化为又故数列是首项为公比为2的等比数列,故数列的通项公式故答案为:①;②三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.18、(1)或;(2)【解析】(1)根据题意,由椭圆的几何性质可得a、c的值,计算可得b的值,讨论椭圆焦点的位置,求出椭圆的标准方程,即可得答案;(2)根据题意,求出椭圆的焦点坐标,进而可以设双曲线的方程为,分析可得和,解可得a、b的值,即可得答案【详解】解:(1)根据题意,要求椭圆的长轴长为6,离心率为,则,,解可得:,;则,若椭圆的焦点在x轴上,其方程为,若椭圆的焦点在y轴上,其方程为,综合可得:椭圆的标准方程为或;(2)根据题意,椭圆的焦点为和,故要求双曲线的方程为,且,则有,又由双曲线经过经过点,则有,,联立可得:,故双曲线方程为:【点睛】本题考查椭圆、双曲线的标准方程的求法,涉及椭圆、双曲线的几何性质,属于基础题19、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.20、(1)证明见解析,;(2).【解析】(1)利用与的关系求数列的递推关系,即得证明结论,并根据等比数列求通项公式;(2)根据(1)的结果求出,再分和,求.【详解】(1)当时,,,当时,,与已知式作差得,即,又,∴,∴,故数列是以为首项,2为公比的等比数列,所以(2)由(1)知,∴,若,,若,,∴.【点睛】关键点点睛:本题的关键是第二问弄清楚数列与的前项和的关系,在分段求数列的前项和.21、(1);(2)或.【解析】(1)由题设可得圆心为,半径,根据直线与圆的相切关系,结合点线距离公式列方程求参数a的值即可.(2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a,即可得直线方程.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线距离,即,可得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版企业并购与重组合同:股权收购合同版B版
- 2024年规范化人力资源委托管理合同
- 2024跨境电子商务平台建设与运营合作协议
- 2024年高速路段交通安全设施采购合同
- 2024店铺市场推广合作合同2篇
- 2025年度文化创意产业财产抵押担保投资合同3篇
- 2025年度大型物流枢纽承包经营合同典范3篇
- 2024年网络云服务提供商托管协议
- 2024年新能源项目技术顾问聘任协议3篇
- 2024年度牙齿矫正前后口腔护理指导服务合同3篇
- 胸痛中心护理相关知识培训
- 家长学校“案例教学”《父母课堂》教学设计五篇
- 什么是冠状动脉左主干狭窄心电图的“6+2”现象
- 商业模式画布模板
- 园林景观工程施工组织设计-投标书范本
- 智能语音机器人解决方案
- 历史论述题汇总
- 领导干部实绩报告表表样
- 钢结构起重机行车轨道安装工程检验批质量验收记录表
- 上好高三试卷讲评课,打造高效课堂
- 土石坝填筑的施工方法
评论
0/150
提交评论