版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届崇左市重点中学数学高一上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若存在实数,()满足,则的最小值为()A B.C. D.12.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程(为时间),则下图与故事情节相吻合的是()A. B.C. D.3.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④4.已知集合,则()A. B.C. D.5.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt6.的值为()A. B.1C. D.27.已知函数则()A.- B.2C.4 D.118.已知,,,,则,,的大小关系是()A. B.C. D.9.设函数的定义域,函数的定义域为,则()A. B.C. D.10.若角的终边上一点,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________.12.设x,.若,且,则的最大值为___13.若直线与圆相切,则__________14.若的最小正周期为,则的最小正周期为______15.=_______.16.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.18.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.19.设集合,,不等式的解集为(1)当a为0时,求集合、;(2)若,求实数的取值范围20.已知函数且.(1)试判断函数的奇偶性;(2)当时,求函数的值域;(3)若对任意,恒成立,求实数的取值范围21.已知,.(1)若,求;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令=t,分别解得,,得到,根据参数t的范围求得最小值.【详解】当0≤x≤2时,0≤x2≤4,当2<x≤3时,2<3x-4≤5,则[0,4]∩(2,5]=(2,4],令=t∈(2,4],则,,∴,当,即时,有最小值,故选:A.2、B【解析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率变化即可.【详解】解:对于乌龟,其运动过程分为两段:从起点到终点乌龟没有停歇,一直以匀速前进,其路程不断增加;到终点后,等待兔子那段时间路程不变;对于兔子,其运动过程分三段:开始跑的快,即速度大,所以路程增加的快;中间由于睡觉,速度为零,其路程不变;醒来时追赶乌龟,速度变大,所以路程增加的快;但是最终是乌龟到达终点用的时间短.故选:B【点睛】本题考查利用函数图象对实际问题进行刻画,是基础题.3、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.4、A【解析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A5、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D6、B【解析】根据正切的差角公式逆用可得答案【详解】,故选:B7、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.8、B【解析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【详解】由,不妨设,则,,,所以,故选:B9、B【解析】求出两个函数的定义域后可求两者的交集.【详解】由得,由得,故,故选:B.【点睛】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.10、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式.【详解】当时,2,即,设,则,,又为奇函数,,所以在R上的解析式为.故答案为:.12、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】,,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:13、【解析】由直线与圆相切可得圆心到直线距离等与半径,进而列式得出答案【详解】由题意得,,解得【点睛】本题考查直线与圆的位置关系,属于一般题14、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:15、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.16、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】由题意,求出方程的两根,讨论的正负,确定二次不等式的解集A的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意,令,解得两根为,由此可知,当时,解集,因为,所以的充要条件是,即,解得;当时,解集,因为,所以的充要条件是,即,解得;综上,实数的取值范围为.18、(1)证明见解析(2)【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为19、(1),;(2)或【解析】(1)根据题意,由可得结合,解不等式可得集合,(2)根据题意,分是否为空集2种情况讨论,求出的取值范围,综合即可得答案【详解】解:(1)根据题意,集合,,当时,,,则,(2)根据题意,若,分2种情况讨论:①,当时,即时,,成立;②,当时,即时,,若,必有,解可得,综合可得的取值范围为或【点睛】本题考查集合的包含关系的应用,(2)中注意讨论为空集,属于基础题20、(1)偶函数;(2);(3).【解析】(1)先求得函数的定义域为R,再由,可判断函数是奇偶性;(2)由,所以,以及对数函数的单调性可得函数的值域;(3)对任意,恒成立,等价于,分,和,分别求得函数的最值,可求得实数的取值范围.【详解】(1)因为且,所以其定义域为R,又,所以函数是偶函数;(2)当时,,因为,所以,所以函数的值域为;(3)对任意,恒成立,等价于,当,因为,所以,所以,解得,当,因为,所以,所以函数无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年隔音屏障项目可行性研究报告
- 2024年中国隐形防蚊纱门窗市场调查研究报告
- 青海大学昆仑学院《有机硅高分子及其应用》2023-2024学年第一学期期末试卷
- 青海大学昆仑学院《短视频创意与制作》2023-2024学年第一学期期末试卷
- 产品研发流程管理与优化实践
- 传统节日文化与服饰搭配艺术
- 医疗旅游的发展现状与挑战
- 城市绿化与景观建筑设计结合案例
- 中国体育产业发展报告及前景展望
- 青岛农业大学海都学院《社会项目管理与评估》2023-2024学年第一学期期末试卷
- 金属冶炼知识培训
- 2024-2025学年度广东省春季高考英语模拟试卷(解析版) - 副本
- 商会内部管理制度
- 2024年物业转让协议书范本格式
- 幼儿园小班健康《打针吃药我不怕》课件
- 广州英语小学六年级英语六上册作文范文1-6单元
- 2025届上海市宝山区行知实验生物高一上期末教学质量检测模拟试题含解析
- 三甲级综合医院绩效工资分配与考核实施方案
- 学术道德与学术规范考试答案(参考)-3
- 期末考试-2024-2025学年语文四年级上册统编版
- 《司马光》公开课一等奖创新教案
评论
0/150
提交评论