版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省无锡市锡山区天一中学高二上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.42.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.3.()A.-2 B.-1C.1 D.24.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条5.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.6.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.7.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.8.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.9.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.命题:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>011.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.6012.等差数列中,若,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若不同的平面的一个法向量分别为,,则与的位置关系为___________.14.已知圆的方程为,点是直线上的一个动点,过点作圆的两条切线为切点,则四边形面积的最小值为__________;直线__________过定点.15.已知双曲线的左,右焦点分别为,,右焦点到一条渐近线的距离是,则其离心率的值是______;若点P是双曲线C上一点,满足,,则双曲线C的方程为______16.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.18.(12分)已知函数,数列的前n项和为,且对一切正整数n、点都在因数的图象上(1)求数列的通项公式;(2)令,数列的前n项和,求证:19.(12分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由20.(12分)设抛物线的焦点为,点在抛物线上,且,椭圆右焦点也为,离心率为(1)求抛物线方程和椭圆方程;(2)若不经过的直线与抛物线交于、两点,且(为坐标原点),直线与椭圆交于、两点,求面积的最大值21.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.22.(10分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.2、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A3、A【解析】利用微积分基本定理计算得到答案.【详解】.故选:.【点睛】本题考查了定积分的计算,意在考查学生的计算能力.4、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.5、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.6、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D7、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A8、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.9、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.10、B【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故选:B11、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.12、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行14、①.②.【解析】根据切线的相关性质将四边形面积化为,即求出最小值即可,即圆心到直线的距离;又可得四点在以为直径的圆上,且是两圆的公共弦,设出点坐标,求出圆的方程可得直线方程,即可得出定点.详解】由圆得圆心,半径,由题意可得,在中,,,可知当垂直直线时,,所以四边形的面积的最小值为,可得四点在以为直径的圆上,且是两圆的公共弦,设,则圆心为,半径为,则该圆方程为,整理可得,联立两圆可得直线AB的方程为,即可得当时,,故直线过定点.故答案为:;.15、①.##1.5②.【解析】求得焦点到渐近线的距离可得,计算即可求得离心率,由双曲线的定义可求得,计算即可得出结果.【详解】双曲线的渐近线方程为,即,焦点到渐近线的距离为,又,,,,.双曲线上任意一点到两焦点距离之差的绝对值为,即,,即,解得:,由,解得:,.双曲线C的方程为.故答案为:;.16、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.18、(1)(2)证明见解析【解析】(1)根据数列中和的关系,即可解出;(2)利用裂项相消法求出,即可进一步汽车其范围.【小问1详解】由题知,当时,,当时,也满足上式,综上,;【小问2详解】,则,由,得,所以.19、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,结合直线方程,化简可得结论.【小问1详解】依题意,,所以,故椭圆方程为:【小问2详解】当直线MN的斜率不存在时,设M(),N(,),则,,此时M,N重合,不符合题意;当直线MN的斜率存在时,设MN的方程为:,M(,),N(),与椭圆方程联立可得:,即,∴,即,∴,∴,∴,当时,,直线MN:,即,令,则,∴直线过定点【点睛】本题考查了椭圆方程的求法以及直线和椭圆相交时过定点的问题,解答时要注意解题思路的顺畅,解答的难点在于运算量较大且复杂,需要十分细心.20、(1)抛物线方程为,椭圆方程为(2)【解析】(1)由,可得,继而可得,故,再利用离心率,以及,即得解;(2)设直线方程为,与抛物线联立,,结合韦达定理可得,再与椭圆联立,,韦达定理代入,结合均值不等式即得解【小问1详解】由题意,解得:,故,,,,,所以抛物线方程为,椭圆方程为【小问2详解】设直线方程为,由消去得,,设,,则因,所以或(舍去),所以直线方程为由,消去得,设,,则设直线与轴交点为,则所以令,则,所以,当且仅当时,即时,取最大值21、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度汽车轻量化零部件采购合同2篇
- 2024年度版权转让合同(文学作品)3篇
- 2024年度品牌加盟战略合作协议
- 2024中国石化齐鲁石化毕业生招聘11人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信河北公司春季招聘134人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国平安财产保险股份限公司福清中心支公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国化学山东省公路建设(集团)限公司总部招聘82人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国一汽校园招聘1000+岗位易考易错模拟试题(共500题)试卷后附参考答案
- 2024下半年浙江湖州南太湖市政建设限公司人员招聘2人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海吉祥航空工具管理员招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年贵州省贵阳修文县事业单位招聘133人历年管理单位遴选500模拟题附带答案详解
- 读书分享《非暴力沟通》课件(图文)
- 宁夏回族自治区银川市2025届高三上学期第三次月考数学试卷含答案
- 2024-2030年中国家禽饲养行业发展前景预测和投融资分析报告
- 2024-2030年中国净菜加工行业市场营销模式及投资规模分析报告
- 2024-2025学年广东省佛山市九年级(上)期中数学试卷(含答案)
- 湖南省长沙市雅礼教育集团2024-2025学年高一上学期期中考试数学试题 含解析
- 中国视觉小说行业现状调查与竞争趋势分析研究报告(2024-2030版)
- 仓储物流中心物业安全管理
- 第二章 空气、物质的构成(选拔卷)(原卷版)
- 咨询师基础心理学课件
评论
0/150
提交评论