版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市镇海区镇海中学2025届数学高二上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.2.若圆的半径为,则实数()A. B.-1C.1 D.3.已知数列满足,则()A. B.C. D.4.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件5.已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A. B.C. D.6.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为()A. B.C. D.7.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件8.在△ABC中,角A,B,C的对边分别为a,b,c,若,则△ABC()A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形9.椭圆的焦点坐标为()A., B.,C., D.,10.已知分别是等差数列的前项和,且,则()A. B.C. D.11.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.712.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.14.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.15.已知AB为圆O:的直径,点P为椭圆上一动点,则的最小值为______16.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.18.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和19.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.20.(12分)在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点(1)求证:平面ABCD;(2)求直线AB与平面PBC所成角的正弦值21.(12分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围22.(10分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.2、B【解析】将圆的方程化为标准方程,即可求出半径的表达式,从而可求出的值.【详解】由题意,圆的方程可化为,所以半径为,解得.故选:B.【点睛】本题考查圆的方程,考查学生的计算求解能力,属于基础题.3、D【解析】根据给定条件求出数列的通项公式,再利用裂项相消法即可计算作答.【详解】因,则,所以,所以.故选:D4、A【解析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A5、C【解析】点P取端轴的一个端点时,使得∠F1PF2是最大角.已知椭圆上不存在点P,使得∠F1PF2是钝角,可得b≥c,利用离心率计算公式即可得出【详解】∵点P取端轴的一个端点时,使得∠F1PF2是最大角已知椭圆上不存在点P,使得∠F1PF2是钝角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故选C【点睛】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).6、B【解析】求出、的值,即可得出双曲线的渐近线方程.【详解】由已知可得,,则,因此,该双曲线的渐近线方程为.故选:B.7、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.8、C【解析】由余弦定理确定角的范围,从而判断出三角形形状【详解】由得-cosC>0,所以cosC<0,从而C为钝角,因此△ABC一定是钝角三角形.故选:C9、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.10、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D11、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D12、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.14、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.15、2【解析】方法一:通过对称性取特殊位置,设出P的坐标,利用向量的数量积转化求解最小值即可方法二:利用向量的数量积,转化为向量的和与差的平方,通过圆的特殊性,转化求解即可【详解】解:方法一:依据对称性,不妨设直径AB在x轴上,x,,,从而故答案为2方法二:,而,则答案2故答案为2【点睛】本题考查直线与圆的位置关系、椭圆方程的几何性质考查转化思想以及计算能力16、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即18、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,所以,解得或,又因为数列的任意相邻两项均不相等,且,所以数列为2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以为首项,公比为-1的等比数列,所以,即;所以选②:因为,易知,,所以两式相减可得,即,以下过程与①相同;选③:由,可得,又,时,,所以,因为,所以也满足上式,所以,即,以下过程与①相同19、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.20、(1)证明见解析,(2)【解析】(1)题中易得,,利用勾股定理可得,从而可证得线面垂直;(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,用空间向量法求线面角的正弦值【详解】(1)证明:在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,,点E为棱AD的中点,,,,,,,平面ABCD(2)以E为原点,EA为x轴,EB为y轴,EP为z轴,建立空间直角坐标系,0,,,0,,,,,,设平面PBC的法向量y,,则,取,得1,,设直线AB与平面PBC所成角,直线AB与平面PBC所成角的正弦值为:【点睛】本题考查线面垂直的证明,考查空间向量法求线面角.空间角的求法一般都是建立空间直角坐标系,用空间向量法求得空间角21、(1)答案见解析;(2).【解析】(1)根据实数a的正负性,结合导数的性质分类讨论求解即可;(2)利用常变量分离法,通过构造函数,利用导数的性质进行求解即可.【小问1详解】当a≤0时,在(0,+∞)上恒成立;当a>0时,令得;令得;综上:a≤0时f(x)在(0,+∞)上单调递减;a>0时,f(x)在上单调递减,在上单调递增;【小问2详解】由题意知ax-2lnx≤x-2在(0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贴心客户关怀劳动合同
- 赞助商活动资助协议
- 足疗店合作经营协议书
- 车辆安全保证书模板示例
- 软件技术实施与推广合同
- 轻质型材设计招标项目
- 还建房购买合同协议书范例
- 违章行车责任保证书
- 遵守纪律远离打架
- 酒店制服采购合同
- 安徽省宿州市省、市示范高中2024-2025学年高二上学期期中教学质量检测语文试题
- 1《饮食与健康第一课时零食与健康》(说课稿)皖教版五年级上册综合实践活动
- Module2 Unit5 My friends(说课稿)-2024-2025学年沪教牛津版(深圳用)英语四年级上册
- 4 公民的基本权利和义务 (说课稿 )2023-2024学年统编版道德与法治六年级上册
- 上海市同济大学第二附属中学2024-2025学年高一上学期期中考试英语试题(无答案)
- 第4课 日本明治维新(说课稿)-2024-2025学年九年级历史下册素养提升说课稿(统编版)
- 13 寒号鸟 公开课一等奖创新教学设计
- 2025年新高考语文复习 诗歌鉴赏-语言 课件
- 汽车租赁公司车辆养护制度
- 《第二节 气温和降水》教学设计
- 2024年河北高中学业水平合格性考试历史试题真题(含答案)
评论
0/150
提交评论