2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题含解析_第1页
2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题含解析_第2页
2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题含解析_第3页
2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题含解析_第4页
2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省池州市东至第二中学高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则的值为()A. B.0C.1 D.2.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值3.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b4.若双曲线的一条渐近线方程为.则()A. B.C.2 D.45.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.6.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.7.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数n的值是()A. B.C. D.8.已知抛物线y2=2px(p>0)的焦点为F,准线为l,M是抛物线上一点,过点M作MN⊥l于N.若△MNF是边长为2的正三角形,则p=()A. B.C.1 D.29.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.10.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.11.在中,,满足条件的三角形的个数为()A.0 B.1C.2 D.无数多12.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程是________14.已知函数的单调递减区间是,则的值为______.15.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.16.已知抛物线方程为,则其焦点坐标为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值18.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.19.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和20.(12分)设函数,且存在两个极值点、,其中.(1)求实数的取值范围;(2)若恒成立,求最小值.21.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值22.(10分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求导,代入,求出,进而求出.【详解】,则,即,解得:,故,所以故选:B2、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A3、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.4、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C5、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A6、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.7、C【解析】首先根据抛物线焦半径公式得到,从而得到,再根据曲线的一条渐近线与直线AM平行,斜率相等求解即可.【详解】由题知:,解得,抛物线.双曲线的左顶点为,,因为双曲线的一条渐近线与直线平行,所以,解得.故选:C8、C【解析】根据正三角形的性质,结合抛物线的性质进行求解即可.【详解】如图所示:准线l与横轴的交点为,由抛物线的性质可知:,因为若△MNF是边长为2的正三角形,所以,,显然,在直角三角形中,,故选:C9、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来10、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.11、B【解析】利用正弦定理得到,进而或,由,得,即可求解【详解】由正弦定理得,,或,,,故满足条件的有且只有一个.故选:B12、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准形式,从而得到准线方程.【详解】抛物线方程可化为:抛物线准线方程为:故答案为【点睛】本题考查抛物线准线的求解,易错点是未将抛物线方程化为标准方程.14、【解析】先求出,由题设易知是的解集,利用根与系数关系求m、n,进而求的值.【详解】由题设,,由单调递减区间是,∴的解集为,则是的解集,∴,可得,故.故答案为:15、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为16、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.18、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为19、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.20、(1)(2)【解析】(1)存在两个极值点,等价于其导函数有两个相异零点;(2)适当构造函数,并注意与关系,转化为函数求最大值问题,即可求得的范围.【小问1详解】(),,函数存在两个极值点、,且,关于的方程,即在内有两个不等实根,令,,即,,实数的取值范围是.【小问2详解】函数在上有两个极值点,由(1)可得,由,得,则,,,,,,,,令,则且,令,,,再设,则,,,即在上是减函数,(1),,在上是增函数,(1),,恒成立,恒成立,,的最小值为.【点睛】关键点点睛:本题考查导函数,函数的单调性,最值,不等式证明,考查学生分析解决问题的能力,解题的关键是将恒成立,转化为恒成立,化简,令,则化为,然后构造函数,利用导数求出其最大值即可,属于较难题21、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为22、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论