版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省通化市第十四中学数学高二上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则3.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切4.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.5.焦点为的抛物线标准方程是()A. B.C. D.6.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.7.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.8.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知线段AB的端点B在直线l:y=-x+5上,端点A在圆C1:上运动,线段AB的中点M的轨迹为曲线C2,若曲线C2与圆C1有两个公共点,则点B的横坐标的取值范围是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)10.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.11312.已知向量,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,请写出一个符合条件的通项公式______14.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.15.抛物线的准线方程为_____16.过圆内的点作一条直线,使它被该圆截得的线段最短,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求18.(12分)某公园有一形状可抽象为圆柱的标志性景观建筑物,该建筑物底面直径为8米,在其南面有一条东西走向的观景直道,建筑物的东西两侧有与观景直道平行的两段辅道,观景直道与辅道距离10米.在建筑物底面中心O的东北方向米的点A处,有一全景摄像头,其安装高度低于建筑物的高度(1)在西辅道上距离建筑物1米处的游客,是否在该摄像头的监控范围内?(2)求观景直道不在该摄像头的监控范围内的长度19.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长20.(12分)某市为加强市民对新冠肺炎的知识了解,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),共5人,第2组[25,30),共35人,第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)求a的值;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,且该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有-名志愿者被抽中的概率.21.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值22.(10分)已知圆C:x2+y2+2ax﹣3=0,且圆C上存在两点关于直线3x﹣2y﹣3=0对称.(1)求圆C的半径r;(2)若直线l过点A(2,),且与圆C交于MN,两点,|MN|=2,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为2、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C3、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在4、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A5、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.6、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D7、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.8、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.9、D【解析】设,AB的中点,由中点坐标公式求得,代入圆C1:得点点M的轨迹方程,再根据两圆的位置关系建立不等式,代入,求解即可得点B的横坐标的取值范围.【详解】解:设,AB的中点,则,所以,又因为端点A在圆C1:上运动,所以,即,因为曲线C2与圆C1有两个公共点,所以,又因B在直线l:y=-x+5上,所以,所以,整理得,即,解得,所以点B的横坐标的取值范围是,故选:D.10、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A11、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.12、A【解析】根据得出,根据充分必要条件的定义可判断.【详解】解:∵,向量,,∴,即,根据充分必要条件的定义可判断:“”是“”的充分不必要条件,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)14、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:15、【解析】本题利用抛物线的标准方程得出抛物线的准线方程【详解】由抛物线方程可知,抛物线的准线方程为:故答案为【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题16、【解析】由已知得圆的圆心为,所以当直线时,被该圆截得的线段最短,可求得直线的方程.【详解】解:由得,所以圆的圆心为,所以当直线时,被该圆截得的线段最短,所以,解得,所以直线l的方程为,即,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.18、(1)不在(2)17.5米【解析】(1)以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系,求出直线AB方程,判断直线AB与圆O的位置关系即可;(2)摄像头监控不会被建筑物遮挡,只需求出过点A的直线l与圆O相切时的直线方程即可.【小问1详解】以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系则,观景直道所在直线的方程为依题意得:游客所在点为则直线AB的方程为,化简得,所以圆心O到直线AB的距离,故直线AB与圆O相交,所以游客不在该摄像头监控范围内.【小问2详解】由图易知:过点A的直线l与圆O相切或相离时,摄像头监控不会被建筑物遮挡,所以设直线l过A且恰与圆O相切,①若直线l垂直于x轴,则l不可能与圆O相切;②若直线l不垂直于x轴,设,整理得所以圆心O到直线l的距离为,解得或,所以直线l的方程为或,即或,设这两条直线与交于D,E由,解得,由,解得,所以,观景直道不在该摄像头的监控范围内的长度为17.5米.19、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为20、(1)0.04;(2).【解析】(1)根据频率的计算公式,结合概率之和为1,即可求得参数;(2)根据题意求得抽样比以及第三组和第四组各抽取的人数,再列举所有可能抽取的情况,找出满足题意的情况,利用古典概型的概率计算公式即可求得结果.【小问1详解】第一组频率为,第二组的频率为,则第一组与第二组的频率之和为,又,故.【小问2详解】第3组的人数为,第4组的人数为,第5组的人数为,因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志题者中抽收6名志愿者,每组抽取的人数分别为:第3组:;第4组:;第5组:.记第3组的3名志愿者为,第4组的2名志愿者为,则从5名志愿者中抽取2名志愿者有:,,共有10种其中第3组的3名志愿者至少有一名志愿者被抽中的有:,共9种.所以第3组至少有一名志愿者被抽中的概率为.21、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为22、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根据对称性可知直线m过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州澍青医学高等专科学校《广告策划与创意》2023-2024学年第一学期期末试卷
- 小学2025-2026学年度第一学期教学工作计划
- 长春汽车工业高等专科学校《酒店管理信息系统》2023-2024学年第一学期期末试卷
- 食品生产过程中交叉污染预防措施
- 保险入职培训模板
- 专业基础知识(给排水)-2020年注册公用设备工程师(给水排水)《专业基础知识》真题
- 代表爱情的花语
- 统编版五年级语文上册寒假作业(九)(有答案)
- 人教版四年级数学下册第一次月考综合卷(含答案)
- 二零二五年特种设备特种买卖合同3篇
- 下套管危害识别和风险评估
- 翼状胬肉病人的护理
- GB/T 12914-2008纸和纸板抗张强度的测定
- GB/T 1185-2006光学零件表面疵病
- ps6000自动化系统用户操作及问题处理培训
- 家庭教养方式问卷(含评分标准)
- 城市轨道交通安全管理课件(完整版)
- 线缆包覆挤塑模设计和原理
- TSG ZF001-2006 安全阀安全技术监察规程
- 部编版二年级语文下册《蜘蛛开店》
- 锅炉升降平台管理
评论
0/150
提交评论