专题225相似三角形的应用(举一反三)(沪科版)_第1页
专题225相似三角形的应用(举一反三)(沪科版)_第2页
专题225相似三角形的应用(举一反三)(沪科版)_第3页
专题225相似三角形的应用(举一反三)(沪科版)_第4页
专题225相似三角形的应用(举一反三)(沪科版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题22.5相似三角形的应用【九大题型】 【沪科版】 TOC\o"13"\h\u【题型1杠杆问题】 1【题型2建筑物问题】 5【题型3树高问题】 9【题型4河宽问题】 13【题型5影长问题】 18【题型6实验问题】 24【题型7九章算术】 29【题型8实际生活抽象出相似】 32【题型9三角形内接矩形问题】 39【题型1杠杆问题】【例1】(2023·吉林白城·校联考三模)如图①是用杠杆撬石头的示意图,当用力压杠杆时,杠杆绕着支点转动,另一端会向上翘起,石头就被翘动了.在图②中,杠杆的D端被向上翘起的距离BD=9cm,动力臂OA与阻力臂OB满足OA=3OB(AB与CD相交于点O),要把这块石头翘起,至少要将杠杆的C点向下压

【答案】27【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点C向下压的长度.【详解】解:由题意得,AC∥∴△AOC∴ACBD∵AO=3∴ACBD∴AC=3∴至少要将杠杆的C点向下压27cm故答案为:27.【点睛】本题考查相似三角形的判定与性质的实际应用,正确地构造相似三角形是解题的关键.【变式11】(2023春·河南南阳·九年级统考期末)如图是用杠杆撬石头的示意图,点C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起5cm,已知AB:BC=10:1,要使这块石头滚动,至少要将杠杆的A【答案】45【分析】如图:AM、BN都与水平线的垂直,M,N是垂足,则AM∥【详解】解:如图,AM、BN都与水平线的垂直,M,N是垂足,则∵AM∥∴△ACM∴ACBC∵AB:∴ACBC=AM∴当BN≥5cm时,故要使这块石头滚动,至少要将杠杆的A端向下压45cm故答案为:45.【点睛】本题主要考查了相似三角形的判定与性质的实际应用,正确作出辅助线、构造相似三角形是解题的关键.【变式12】(2023春·安徽合肥·九年级合肥市第四十五中学校考期中)如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个 B.2个 C.3个 D.4个【答案】D【分析】根据在同一平面内,垂直于同一直线的两直线互相平行判断出B1C∥A1D,然后求出△OB1C∽△OA1D,判断出①正确;根据相似三角形对应边成比例列式求解即可得到②正确;根据杠杆平衡原理:动力×动力臂=阻力×阻力臂列式判断出③正确;求出F的大小不变,判断出④正确.【详解】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∵△OB1C∽△OA1D,∴OCOD由旋转的性质得,OB=OB1,OA=OA1,∴OA•OC=OB•OD,故②正确;由杠杆平衡原理,OC•G=OD•F1,故③正确;∴F1∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.【变式13】(2023春·江苏泰州·九年级阶段练习)如图1,在△ABC中,G是BC的中点,E是AG的中点,CE的延长线交AB于D,求AD:BD(1)解:过G作GF∥AB,交CD于F.请继续完成解答过程:(2)创新求解:利用“杠杆平衡原理”解答本题:(如图2)设G点为杠杆BC的支点,B端所挂物体质量为1kg;则C端所挂物体质量为1kg,G点承受质量为2kg;当E点为杠杆AG的支点,则A端所挂物体质量为2kg;再以D为杠杆AB的支点时,AD:BD=1kg:2kg=1:2应用:如图3,在△ABC中,G是BC上一点,E是AG上一点,CE的延长线交AB于D,且=,=2,求AD:BD解:设G点为杠杆BC的支点,B端所挂物体质量为6kg,则C端所挂物体质量为kg,G点承受质量为kg;当E点为杠杆AG的支点,则A端所挂物体质量为kg;再以D为杠杆AB的支点时,AD:BD=.【答案】(1)AD:BD=1:2;(2)4,10,5,6:5.【详解】试题分析:(1)如图1,过G作GF∥AB,交CD于F,得到△EFG∽△ADE,根据相似三角形的想知道的,求得GF=AD,根据△CGF∽△CBD,得到,即可得到结论;(2)根据题目中提供的解题思路和方法,结合(1)的结论即可得到答案.解:(1)如图1,过G作GF∥AB,交CD于F,∴△EFG∽△ADE,∴,∵E是AG的中点,∴=1,∴GF=AD,∵GF∥BD,∴△CGF∽△CBD,∴,∵G是BC的中点,∴,∴AD:BD=1:2;(2)设G点为杠杆BC的支点,B端所挂物体质量为6kg,∵=,∴C端所挂物体质量:B端所挂物体质量==,∴C端所挂物体质量=4kg,G点承受质量=C端所挂物体质量+B端所挂物体质量=10kg;当E点为杠杆AG的支点,∵=2,∴A端所挂物体质量:G点承受质量=1:2,∴A端所挂物体质量=5kg;以D为杠杆AB的支点时,AD:BD=B端所挂物体质量:A端所挂物体质量=6:5.故答案为4,10,5,6:5.考点:相似形综合题.【题型2建筑物问题】【例2】(2023春·江苏·九年级专题练习)如图,建筑物BC上有一个旗杆AB,小芳计划用学过的知识测量该建筑物的高度,测量方法如下:在该建筑物底部所在的平地上有一棵小树FD,小芳沿CD后退,发现地面上的点E、树顶F、旗杆顶端A恰好在一条直线上,继续后退,发现地面上的点G、树顶F、建筑物顶端B恰好在一条直线上,已知旗杆AB=3米,FD=4米,DE=5米,EG=1.5米,点A、B、C在一条直线上,点C、D、E、G在一条直线上,AC、FD均垂直于【答案】这座建筑物的高BC为14米.【分析】根据相似三角形的判定和性质得出CD,进而解答即可.【详解】解:由题意可得,∠ACE=∠FDE=90°,∠AEC=∠FED,∴△ACE∽△FDE,∴ACFD=CEDE∴CD=由题意可得,∠BCG=∠FDG=90°,∠BGC=∠FGD,∴△BCG∽△FDG,∴BCFD=CGDG∴6.5BC=4(CD+6.5),∴6.5BC∴BC=14,∴这座建筑物的高BC为14米.【点睛】此题考查似三角形的判定和性质的应用,关键是根据相似三角形的判定和性质解答.【变式21】(2023春·山东济南·九年级期末)小军想出了一个测量建筑物高度的方法:在地面上点C处平放一面镜子,并在镜子上做一个标记,然后向后退去,直至站在点D处恰好看到建筑物AB的顶端A在镜子中的像与镜子上的标记重合(如图).设小军的眼睛距地面1.65m,BC、CD的长分别为60m、3m,求这座建筑物的高度.【答案】33米【分析】利用相似三角形的判定与性质得出ABED=BC【详解】解:由题意可得:∠ABC=∠EDC,∠ACB=∠ECD,∴△ABC∽△EDC,∴AB∵小军的眼睛距地面1.65m,BC、CD的长分别为60m、3m,∴AB1.65解得:AB=33,答:这座建筑物的高度为33m.【点睛】本题考查相似三角形的判定和性质的应用.结合平面镜成像的特点证明两个三角形相似是解题的关键.【变式22】(2023春·江苏·九年级统考期末)如图,小明想测量河对岸建筑物AB的高度,在地面上C处放置了一块平面镜,然后从C点向后退了2.4米至D处,小明的眼睛E恰好看到了镜中建筑物A的像,在D处做好标记,将平面镜移至D处,小明再次从D点后退2.52米至F处,眼睛G恰好又看到了建筑物顶端A的像,已知小明眼睛距地面的高度ED,GF均为1.6米,求建筑物AB的高度.(注:图中的左侧α,β为入射角,右侧的α,β为反射角)【答案】32米【分析】易得△ABC∽△EDC以及△ABD∽△GFD,根据相似三角形的性质得到关于x和y的方程组,求解即可.【详解】解:设AB为xm,BC为ym,根据题意知,△ABC∽△EDC,有xy=△ABD∽△GFD,有xy+2.4联立①②,得x=32.答:建筑物AB的高度为32m.【点睛】本题考查相似三角形的实际应用,掌握相似三角形的性质是解题的关键.【变式23】(2023春·四川达州·九年级校考期末)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.小明在路灯BC下的影子顶部恰好位于路灯DA的正下方,小亮在路灯AD下的影子顶部恰好位于路灯BC的正下方.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【答案】①1.5米

②12米【分析】①根据EP⊥AB,CB⊥AB,②根据FQ⊥AB,AD⊥【详解】①∵EP∴∠EPA∵∠EAP∴△EAP∽∴EPBC∴1.89=∴AB=10,∴BQ=1026.5=1.5,即小亮在路灯D下的影长是1.5米.②∵FQ∴FQ∥∴∠BFQ∵∠BQF∴△BFQ∽∴BQBA∴1.510=解得DA=12,∴建筑物的高为12米.【点睛】本题考查相似三角形的判定和性质,解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解。【题型3树高问题】【例3】(2023春·陕西咸阳·九年级统考期中)小军想用镜子测量一棵古松树的高度,但因树旁有一条小河,不能测量镜子与树之间的距离,于是他利用镜子进行两次测量,如图,第一次他把镜子放在点C处,他在点F处正好在镜中看到树尖A的像;第二次他把镜子放在点C'处,他在点F'处正好在镜中看到树尖A的像.已知AB⊥BF',EF⊥

【答案】8.5米【分析】先证明△ABC∽△EFC,得出EFAB=CFBC,再证明△ABC∽△E'F'【详解】解:∵∠ABC=∠EFC∴△ABC∴EFAB∵∠ABC'∴△ABC∴E'∵EF∴CFBC∵CC'=12m∴1.8BC解得:BC=9∴1.7AB解得:AB=8.5答:这棵古松树的高度为8.5m【点睛】本题考查了相似三角形的应用,掌握相似三角形的判定与性质是解决问题的关键.【变式31】(2023春·江苏盐城·九年级校联考期末)我国魏晋时期数学家刘徽编撰的最早一部测量数学著作《海岛算经》中有一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高几何?译文:今要测量海岛上一座山峰AH的高度,在B处和D处树立标杆BC和DE,标杆的高都是3丈,B和D两处相隔1000步(1丈=10尺,1步=6尺),并且AH,CB和DE在同一平面内.从标杆BC后退123步的F处可以看到顶峰A和标杆顶端C在同一直线上;从标杆ED后退127步的G处可以看到顶峰A和标杆顶端E在同一直线上.则山峰AH的高度是.【答案】1255步【详解】试题解析:∵AH∥BC,∴△BCF∽△HAF,∴BFHF又∵DE∥AH,∴△DEG∽△HAG,∴DGHG又∵BC=DE,∴BFHF即123123+∴BH=30750(步),又∵BFHF∴AH=5×30750+123123【变式32】(2023春·九年级单元测试)如图所示,在离某建筑物4m处有一棵树,在某时刻,1.2m长的竹竿垂直地面,影长为2m,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m,则这棵树高约有多少米(

A.6.4米 B.5.4米 C.4.4米 D.3.4米【答案】C【分析】因为在同一时刻同一地点任何物体的高与其影子长的比值相同,利用竹竿这个参照物就可以求出图中的BE.BC是BE的影子,然后加上CD加上树高即可.【详解】解:过点C作CE∥AD交AB于点E,

则CD=AE=2m,△BCE∽△B′BA′,∴A′B′:B′B=BE:BC,即1.2:2=BE:4,∴BE=2.4,∴AB=2.4+2=4.4.答:这棵树高约有4.4m.故选:C.【点睛】考查了相似三角形的应用,此题主要是要知道在同一时刻同一地点任何物体的高与其影子长的比值相同这个结论,然后根据题目条件就可以求出树高.【变式33】(2023春·九年级课时练习)如图,左、右并排的两棵大树的高分别为AB=8m,CD=12m,两树底部的距离BD=5m,王红估计自己眼睛距地面1.6m.她沿着连接这两棵树的一条水平直路l从左向右前进,在前进的过程中,她发现看不到右边较高的树的顶端

A.小于8m B.小于9m C.大于8m D.大于9m【答案】A【分析】连接CA并延长交FG于点N,过N作NM⊥l于点M,设NH=xm【详解】解:如图,连接CA并延长交FG于点N,过N作NM⊥l于点∵FG∥l,EF,∴NM=∴AH=AB-由题意知,四边形HBDK是矩形,则HK=设NH=xm∵AH∥∴△NHA∴AHCK即6.410.4解得:x=8当王红刚好看到右边较高的树的顶端C时,她与左边较低的树AB的水平距离为8m,当她看不到较高的树的顶端C时,则她与左边较低的树AB的水平距离应小于8故选:A.

【点睛】本题考查了相似三角形的实际应用,正确理解题意,灵活利用相似三角形的性质是解题的关键.【题型4河宽问题】【例4】(2023春·安徽安庆·九年级统考期中)如图所示,一条河流的两岸互相平行,沿南岸有一排大树,每隔4米一棵,沿北岸有一排电线杆,每两根电线杆之间的距离为80米,一同学站在距南岸9米的点P处,正好北岸相邻的两根电线杆被南岸的5棵树遮挡住,那么这条河流的宽度是米.【答案】36【分析】根据题意,利用相似三角形的判定定理可得∆ABP【详解】解:如图,∵北岸相邻的两根电线杆被南岸的5棵树遮挡住,∴AB=16m,∵AB∥∴∆ABPABDC∵AB=16m,P到AB的距离即∴1680解得:EF=36∴河宽为36米,故答案为:36.【点睛】题目主要考查相似三角形的判定和性质,理解题意,熟练运用相似三角形的判定和性质是解题关键.【变式41】(2023春·江苏苏州·九年级苏州市振华中学校校考期末)如图,小斌想用学过的知识测算河的宽度EF.在河对岸有一棵高4米的树GF,树GF在河里的倒影为HF,GF=HF,小斌在岸边调整自己的位置,当恰好站在点B处时看到岸边点C和倒影顶点H在一条直线上,点C到水面EF的距离CE=0.8米,AB=1.6米,BC=2.4米,AB⊥BC,CE⊥EF,FH⊥EF,GF【答案】7.2米【分析】首先推知△ABC∽△CED,△CED【详解】解:∵BC∥EF,AB⊥∴∠ACB=∠CDE∴△ABC∴ABCE=BC∴ED=1.2∵CE⊥EF,∴∠CED∵∠CDE∴△CED∴FHCE=DF∴DF=6∴EF=∴河的宽度EF为7.2米.【点睛】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.【变式42】(2023春·河南南阳·九年级统考期中)学习相似三角形相关知识后,善于思考的小明和小颖两位同学想通过所学计算桥AF的长.如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得DE∥BC.经测量,BC=120米,DE=200米,且点E到河岸BC的距离为60米.已知AF⊥【答案】桥AF的长度为90米【分析】过E作EG⊥BC于G,可得△ABC∽△ADE,即可得出ACCE=【详解】解:如图所示,过E作EG⊥BC于∵DE∴△ABC∴BC∴AC∵AF⊥BC∴AF∴△ACF∴ACEC解得AF=90答:桥AF的长度为90米.【点睛】本题主要考查了利用相似三角形的实际应用.掌握相似三角形的判定和性质是解题关键.【变式43】(2023·陕西西安·校考模拟预测)如图,为了估算河面的宽度,即EP的长,在离河岸D点2米远的B点,立一根长为1米的标杆AB,在河对岸的岸边有一块高为2.5米的安全警示牌MF,警示牌的顶端M在河里的倒影为点N,即PM=PN,两岸均高出水平面1.25米,即DE=FP=1.25米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N共线,点B、D、F共线,若AB、DE、MF【答案】10米【分析】延长AB交EP的反向延长线于点H,由△ABD∽△AHO求得OH,再由△AHO∽△【详解】解:延长AB交EP的反向延长线于点H,则四边形BDEH是矩形,∴BH=DE∴AH∵BD∥∴△ABD∽△∴BD∴2∴HO∵PM=PN,MF∴PN∵AH⊥EP∴AH∥∴△AHO∽△∴AH∴2.25∴PO∴PE答:河宽EP是10米.【点睛】本题主要考查了相似三角形的性质与判定,构造和证明三角形相似是解题的关键.【题型5影长问题】【例5】(2023春·安徽蚌埠·九年级统考期中)在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为()A.6.93米 B.8米 C.11.8米 D.12米【答案】B【分析】作出图形,先根据同时同地物高与影长成正比求出台阶的高落在地面上的影长EH,再求出落在台阶上的影长在地面上的长,从而求出大树的影长假设都在地面上的长度,再利用同时同地物高与影长成正比列式计算即可.【详解】如图,∵DEEH∴EH=0.3×0.6=0.18,∴AF=AE+EH+HF=4.42+0.18+0.2=4.8.∵ABAF∴AB=4.80.6=8(故选:B.【点睛】考查了相似三角形的应用,解题关键是画出图形,把大树的影长分成三段求出假设都在地面上的长度.【变式51】(2023春·安徽安庆·九年级安庆市第四中学校考期中)为了测量学校旗杆的高度AB,数学兴趣小组带着标杆和皮尺来到操场进行测量,测量方案如下:如图,首先,小红在C处放置一平面镜,她从点C沿BC后退,当退行1.8米到D处时,恰好在镜子中看到旗杆顶点A的像,此时测得小红眼睛到地面的距离ED为1.5米;然后,小明在F

处竖立了一根高1.6米的标杆FG,发现地面上的点H、标杆顶点G和旗杆顶点A在一条直线上,此时测得FH为2.4米,DF为3.3米,已知AB⊥BH,ED⊥BH,GF⊥BH,点B、C、D、F、H在一条直线上.(1)直接写出ABBC=(2)请根据以上所测数据,计算学校旗杆AB的高度.【答案】(1)56;(2)学校旗杆AB的高度为25【分析】(1)根据已知条件推出△ABC∽△EDC,即可求解;(2)根据已知条件推出△HGF∽△HAB,即可求解.【详解】解:(1)∵∠ABC=∠EDC=90°,∠ECD=∠ACB,∴△ABC∽△EDC,∴ABBC∵CD=1.8米,ED=1.5米,∴ABBC=1.5故答案为:56(2)设AB=x,则BC=65∵∠ABH=∠GFH=90°,∠AHB=∠GHF,∴△HGF∽△HAB,∴ABGFBH=BC+CD+DF+FH=65x+1.8+3.3+2.4=1.2x+7.5,GF=1.6米,∴x1.6解得:x=25.答:学校旗杆AB的高度为25米.【点睛】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.【变式52】(2023春·安徽亳州·九年级蒙城县第六中学阶段练习)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【答案】①BQ=1.5;②DA【分析】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【详解】①∵EP⊥AB,∴∠∵∠EAP∴△∴EP∴1.8∴ABBQ=10-2-6.5=1.5②∵HQ⊥AB,∴∠∵∠HBQ∴△∴HP∴1.8∴DA=12【点睛】本题考查了相似三角形,解题的关键是找到相似三角形利用相似三角形的对应边成比例进行求解.【变式53】(2023春·江苏南通·九年级校考阶段练习)阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如1图).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如2图),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如3图).身高是1.6米的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2米.(1)在横线上直接填写甲树的高度为______米,乙树的高度为________米﹔(2)请求出丙树的高度.【答案】(1)5.1,4.2;(2)丙树的高为5.56米【分析】(1)如下图1,根据测得一根长为1米的竹竿的影长为0.8米,利用相似三角形的比例式直接得出甲树高,接着如下图2先利用△C1D1E(2)如下图3,先通过△C2D2E2∼△FGE【详解】解:(1)如图1,假设线段AB是甲树,线段CD是竹竿,线段BE和线段CE分别为甲树和竹竿的影子,∴CD∵CD∴CD∴1∴AB故甲树的高为5.1米;如图2,假设线段A1B1线段B1∴C∵△C1D1E∴又∵C∴△A故乙树的高为4.2米;故答案为:5.1,4.2;(2)如图3,假设线段A2B2线段FE2为丙树落在坡面上影长,C2则B2F=2.4米,FE2=3.2米,C2∵C又∵△GFH与图1中的△∴GF又∵△FGH∴故丙树的高为5.56米.【点睛】此题主要考查了相似三角形的应用,有一定难度和综合性,根据同一时刻影长与高成比例以及假设没有墙或台阶时求出影长是解决问题的关键.【题型6实验问题】【例6】(2023春·江西景德镇·九年级统考期中)两千多年前,我国学者墨子和他的学生做了小孔成像的实验.他们的做法是:在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小宇在学习了小孔成像的原理后,利用如图所示装置来观察小孔成像的现象.已知一根点燃的蜡烛距小孔(P)20cm,光屏在距小孔30cm处,小宇测得蜡烛的火焰高度为4cm

A.8cm B.6cm C.5cm【答案】B【分析】画出图像,根据“相似三角形对应高的比等于相似比”列比例式即可求出光屏上火焰所成像的高度.【详解】解:如图,设蜡烛的高度为线段AB,蜡烛的像为A'B',PC⊥AB于C,PC'

由题知A'∴∠A∴△P∴A∴A解得A'即光屏上火焰所成像的高度为6cm故选:B【点睛】本题主要考查了利用“相似三角形对应高的比等于相似比”解决实际问题.熟练掌握这一性质是解题的关键.【变式61】(2023春·陕西西安·九年级校考开学考试)如图,嘉嘉同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜.手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,墙到木板的水平距离为CD=4m.已知光在镜面反射中的入射角等于反射角,图中点A、

【答案】1.2【分析】根据相似三角形的性质列方程即可求解.【详解】证明:△BFC故BCBD=FC∴BC=3∵AC=5.4∴AB=5.4-3=2.4∵光在镜面反射中的入射角等于反射角,∴∠FBC又∵∠FCB∴△BGA∴AGCF∴AG1.5解得:AG=1.2∴灯泡到地面的高度AG为1.2m【点睛】本题考查相似三角形的应用,由相似得到对应线段成比例是解题的关键.【变式62】(2023·陕西西安·校考一模)【学科融合】如图1,在反射现象中,反射光线、入射光线和法线都在同一个平面内,反射光线和入射光线分别位于法线两侧:入射角i等于反射角r,这就是光的反射定律.【问题解决】如图2,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙,木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E到地面的高度DE=3.5m,点FE到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,木板到墙的水平距离为CD=4m.图中A,【答案】灯泡到地面的高度AG为1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论