福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题含解析_第1页
福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题含解析_第2页
福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题含解析_第3页
福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题含解析_第4页
福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市湖里区双十中学2025届数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,,,则()A. B.C. D.2.函数的图象的相邻两支截直线所得的线段长为,则的值是()A. B.C. D.3.计算的值为A. B.C. D.4.的值域是()A. B.C. D.5.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.26.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.7.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.8.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为.这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为()A. B.C. D.9.已知圆与圆相离,则的取值范围()A. B.C. D.10.已知集合,则()A. B.C. D.R二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________12.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______13.已知命题:,都有是真命题,则实数取值范围是______14.已知α为第二象限角,且则的值为______.15.已知圆心为,且被直线截得的弦长为,则圆的方程为__________16.已知为角终边上一点,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某农户利用墙角线互相垂直的两面墙,将一块可折叠的长为am的篱笆墙围成一个鸡圈,篱笆的两个端点A,B分别在这两墙角线上,现有三种方案:方案甲:如图1,围成区域为三角形;方案乙:如图2,围成区域为矩形;方案丙:如图3,围成区域为梯形,且.(1)在方案乙、丙中,设,分别用x表示围成区域的面积,;(2)为使围成鸡圈面积最大,该农户应该选择哪一种方案,并说明理由.18.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象19.已知二次函数.若当时,的最大值为4,求实数的值.20.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.21.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B2、D【解析】由正切函数的性质,可以得到函数的周期,进而可以求出解析式,然后求出即可【详解】由题意知函数的周期为,则,所以,则.故选D.【点睛】本题考查了正切函数的性质,属于基础题3、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.4、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.5、B【解析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题6、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确7、A【解析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.8、A【解析】先利用指数和对数运算化简,再利用算筹表示法判断.【详解】因为,用算筹记数表示为,故选:.9、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法10、D【解析】求出集合A,再利用并集的定义直接计算作答.【详解】依题意,,而,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积12、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.13、【解析】由于,都有,所以,从而可求出实数的取值范围【详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:14、【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求【详解】由,得,得或.α为第二象限角,,.故答案:.15、【解析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=2516、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;,.(2)农户应该选择方案三,理由见解析.【解析】(1)根据矩形面积与梯形的面积公式表示即可得答案;(2)先根据基本不等式研究方案甲得面积的最大值为,再根据二次函数的性质结合(1)研究,的最大值即可得答案.【小问1详解】解:对于方案乙,当时,,所以矩形的面积,;对于方案丙,当时,,由于所以,所以梯形面积为,.【小问2详解】解:对于方案甲,设,则,所以三角形的面积为,当且仅当时等号成立,故方案甲的鸡圈面积最大值为.对于方案乙,由(1)得,,当且仅当时取得最大值.故方案乙的鸡圈面积最大值为;对于方案丙,,.当且仅当时取得最大值.故方案丙的鸡圈面积最大值为;由于所以农户应该选择方案丙,此时鸡圈面积最大.18、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010019、或.【解析】分函数的对称轴和两种情况,分别建立方程,解之可得答案.【详解】二次函数的对称轴为直线,当,即时,当时,取得最大值4,,解得,满足;当,即时,当时,取得最大值4,,解得,满足.故:实数的值为或.20、(1).(2)见解析;(3)【解析】(1)根据对数函数的定义,列出关于自变量x的不等式组,求出的定义域;(2)由函数奇偶性的定义,判定在定义域上的奇偶性;(3)化简,根据对数函数的单调性以及定义域,求出不等式>1的解集.试题解析:(1)要使函数有意义.则,解得.故所求函数的定义域为(2)由(1)知的定义域为,设,则.且,故为奇函数.(3)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是21、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论