2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题含解析_第1页
2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题含解析_第2页
2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题含解析_第3页
2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题含解析_第4页
2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆乌鲁木齐市第四中学高二上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线经过的一点是()A. B.C. D.2.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.3.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.284.若,则=()A.244 B.1C. D.5.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.6.直线被椭圆截得的弦长是A. B.C. D.7.已知函数,则()A. B.C. D.8.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.49.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.10.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.11.函数的单调增区间为()A. B.C. D.12.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.14.某射箭运动员在一次射箭训练中射靶10次,命中环数如下:8,9,8,10,6,7,9,10,8,5,则命中环数的平均数为___________.15.已知向量,,若,则实数m的值是___________.16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.18.(12分)某公司从2020年初起生产某种高科技产品,初始投入资金为1000万元,到年底资金增长50%.预计以后每年资金增长率与第一年相同,但每年年底公司要扣除消费资金x万元,余下资金再投入下一年的生产.设第n年年底扣除消费资金后的剩余资金为万元.(1)用x表示,,并写出与的关系式;.(2)若企业希望经过5年后,使企业剩余资金达3000万元,试确定每年年底扣除的消费资金x的值(精确到万元).19.(12分)命题存在,使得;命题对任意的,都有(1)若命题p为真时,求实数a的取值范围;若命题q为假时,求实数a的取值范围;(2)如果命题为真命题,命题为假命题,求实数a的取值范围20.(12分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.21.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.22.(10分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C2、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A3、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C4、D【解析】分别令代入已知关系式,再两式求和即可求解.【详解】根据,令时,整理得:令x=2时,整理得:由①+②得,,所以.故选:D.5、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D6、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题7、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.8、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B9、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C10、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D11、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.12、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1714、【解析】直接利用求平均数的公式即可求解.【详解】由已知得数据的平均数为,故答案为:.15、【解析】结合已知条件和空间向量的数量积的坐标公式即可求解.【详解】因为,所以,解得.故答案为:.16、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】(1)根据题意得,解方程得,进而得通项公式;(2)由题知,进而解不等式得或,再根据即可得答案.【小问1详解】设等差数列的公差为,由得=0,由题意知,,解得,所以d=2所以.小问2详解】解:由(1)可得,由可得,即,解得或,因为,所以,正整数的最小值为.18、(1);(2)x=348【解析】(1)根据题意直接得,,进而归纳出;(2)由(1)可得,利用等比数列的求和公式可得,结合即可计算出d的值.【小问1详解】由题意知,,,;【小问2详解】由(1)可得,,则,所以,即,当时,,解得,当时,万元.故该企业每年年底扣除消费资金为348万元时,5年后企业剩余资金为3000万元.19、(1)p为真时或,q为假时;(2){或}.【解析】(1)p为真应用判别式求参数范围;q为真,根据恒成立求参数范围,再判断q为假对应的参数范围.(2)由题设易得p、q一真一假,讨论p、q的真假,结合(1)的结果求a的取值范围【小问1详解】若p真,则有实数根,∴,解得或若q为真,则,即故q为假时,实数a的取值范围为【小问2详解】∵命题真命题,命题为假命题,∴p,q一真一假,当p真q假时,,可得当p假q真时,,可得综上,实数a取值范围为或.20、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可得x1x2+y1y2=0,从而可列出关于的方程,进而可求出的值,即可得到直线的方程【详解】(1)由条件知,解得,则故椭圆的方程为(2)显然直线l的斜率存在,且斜率不为0,设直线l:x=my+4交椭圆C于M(x1,y1),N(x2,y2),由,当=(24m)2-4(3m2+4)×36>0时,有,,由条件OM⊥ON可得,,即x1x2+y1y2=0,从而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且满足>0从而直线l方程为或21、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,且,所以四边形为平行四边形,所以,又平面,所以此时平面;当时,此时,但,所以四边形为梯形,所以与必然相交,所以与平面必然相交.综上,当动点M满足时,平面;当动点M满足,但时,与平面相交.22、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论