版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市重点中学2025届高二上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.2.由1,2,3,4,5五个数组成没有重复数字的五位数,其中1与2不能相邻的排法总数为()A.20 B.36C.60 D.723.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.4.用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A. B.C. D.5.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.6.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个7.一组“城市平安建设”的满意度测评结果,,…,的平均数为116分,则,,…,,116的()A.平均数变小 B.平均数不变C.标准差不变 D.标准差变大8.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.9.已知函数,则()A.1 B.2C.3 D.510.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.11.设a,b,c非零实数,且,则()A. B.C. D.12.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.如图,甲站在水库底面上的点处,乙站在水坝斜面上的点处,已知库底与水坝斜面所成的二面角为,测得从,到库底与水坝斜面的交线的距离分别为,,若,则甲,乙两人相距________________14.已知实数满足,则的取值范围是____________15.已知直线(为常数)和圆,给出下列四个结论:①当变化时,直线恒过定点;②直线与圆可能无公共点;③若直线与圆有两个不同交点,,则线段的长的最小值为;④对任意实数,圆上都不存在关于直线对称的两个点.其中正确的结论是______.(写出所有正确结论的序号)16.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额(单位:千亿元)和出口总额(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年若每年的进出口总额,满足线性相关关系,则______;若计划2022年出口总额达到千亿元,预计该年进口总额为______亿元三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:18.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.19.(12分)已知圆,直线,直线l与圆C相交于P,Q两点(1)求的最小值;(2)当的面积最大时,求直线l的方程20.(12分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值21.(12分)已知函数.(1)求的单调区间;(2)讨论的零点个数.22.(10分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.2、D【解析】先排3,4,5,然后利用插空法在4个位置上选2个排1,2.【详解】先排3,4,5,,共有种排法,然后在4个位置上选2个排列1,2,有种排法,则1与2不能相邻的排法总数为种,故选:D.3、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.4、B【解析】依题意,由递推到时,不等式左边为,与时不等式的左边作差比较即可得到答案【详解】用数学归纳法证明等式的过程中,假设时不等式成立,左边,则当时,左边,∴从到时,不等式的左边增加了故选:B5、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.6、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.7、B【解析】利用平均数、方差的定义和性质直接求出,,…,,116的平均数、方差从而可得答案.【详解】,,…,的平均数为116分,则,,…,,116的平均数为设,,…,的方差为则所以则,,…,,116的方差为所以,,…,,116的平均数不变,方差变小.标准差变小.故选:B8、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.9、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C10、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A11、C【解析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.12、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先构造二面角的平面角,如图,再分别在和中求解.【详解】作,且,连结,,,,平面且,四边形时平行四边形,,平面,平面,中,,中,.故答案为:14、【解析】去绝对值分别列出每个象限解析式,数形结合利用距离求解范围.【详解】当,表示椭圆第一象限部分;当,表示双曲线第四象限部分;当,表示双曲线第二象限部分;当,不表示任何图形;以及两点,作出大致图象如图:曲线上的点到的距离为,根据双曲线方程可得第二四象限双曲线渐近线方程都是,与距离为2,曲线二四象限上的点到的距离为小于且无限接近2,考虑曲线第一象限的任意点设为到的距离,当时取等号,所以,则的取值范围是故答案为:15、③④【解析】由可判断①;根据直线过的定点在圆内可判断②;当直线与过圆心的直径垂直时,求出线段的长度可判断③;把圆心代入直线的方程可判断④.【详解】对于①,,当变化时,直线恒过定点,故错误;对于②,因为,所以在圆的内部,所以直线与圆总有公共点,故错误;对于③,当直线与过圆心的直径垂直时,线段的长度的最小,此时,故正确;对于④,把圆心代入直线,得对任意实数,圆上都不存在关于直线对称的两个点,故正确.故答案为:③④.16、①.1.6②.3.65千##3650【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65千三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分18、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.19、(1)4;(2)或.【解析】(1)过定点D(4,2),当CD⊥l时,|PQ|最小;(2),当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,圆心到直线l的距离,据此即可求出m.【小问1详解】由,得,由,∴直线l过定点D(4,2),∵,∴在圆C内部,∴直线和l与圆C相交,当CD⊥l时,|PQ|最小,;【小问2详解】∵,∴当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,故圆心到直线l的距离,∴,解得,∴此时l的方程为:或.20、(1)证明见解析(2)【解析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证得结论成立;(2)利用空间向量法可求得平面与平面的夹角的余弦值.【小问1详解】证明:以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,由得点的坐标为,,,因为,所以与不垂直,所以与平面不垂直【小问2详解】解:设,则,,因为平面,所以,所以,得,且,即,所以,,设平面的法向量为,由,取,可得,因为平面,所以平面的一个法向量为,所以,所以平面与平面所成夹角的余弦值为21、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数的单调区间即可;(2)根据导数分析原函数的极值,进而讨论其零点个数.【详解】(1)因为,所以由,得或;由,得.故单调递增区间是和,单调递减区间是.(2)由(1)可知的极小值是,极大值是.①当时,方程有且仅有1个实根,即有1个零点;②当时,方程有2个不同实根,即有2个零点;③当时,方程有3个不同实根,即有3个零点;④当时,方程有2个不同实根,即有2个零点;⑤当时,方程有1个实根,即有1个零点.综上,当或时,有1个零点;当或时,有2个零点;当时,有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度茶叶品牌推广与市场拓展合同
- 二零二四年度研发合作及技术开发合同
- 村上建房代建协议书(2篇)
- 员工违反纪律协议书(2篇)
- 图书馆编制外劳动合同(2篇)
- 合伙开厂协议书(2篇)
- 抗盐碱树苗购销合同
- 杂粮购进协议
- 通信电缆购销协议
- 广告代理服务合同范本样本
- 新融合大学英语(II)智慧树知到期末考试答案章节答案2024年江西理工大学
- 抖音直播知识培训考试题库(含答案)
- 年产2完整版本.5亿粒胶囊生产车间工艺的设计说明
- 2024年广东省广州市荔湾区中考一模英语试题(无答案)
- 压花艺术-发现植物之美智慧树知到期末考试答案2024年
- 现代农业创新与乡村振兴战略智慧树知到期末考试答案2024年
- MOOC 数学文化十讲-南开大学 中国大学慕课答案
- (高清版)WST 347-2024 血细胞分析校准指南
- 新生儿咽下综合征护理查房
- 小学食品安全教育课件
- 2024年深圳市机场集团有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论